1
|
Chen Q, Chen Z, Tan Y, Wu S, Zou S, Liu J, Song S, Du Q, Wang M, Liang K. Blood microbiota in HIV-infected and HIV-uninfected patients with suspected sepsis detected by metagenomic next-generation sequencing. BMC Infect Dis 2024; 24:1210. [PMID: 39468445 PMCID: PMC11520051 DOI: 10.1186/s12879-024-10009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Information on the comparison of blood microbiota between human immunodeficiency virus (HIV)-infected and HIV-uninfected patients with suspected sepsis by metagenomic next-generation sequencing (mNGS) is limited. METHODS Retrospectively analysis was conducted in HIV-infected and HIV-uninfected patients with suspected sepsis at Changsha First Hospital (China) from March 2019 to August 2022. Patients who underwent blood mNGS testing were enrolled. The blood microbiota detected by mNGS were analyzed. RESULTS A total of 233 patients with suspected sepsis who performed blood mNGS were recruited in this study, including 79 HIV-infected and 154 HIV-uninfected patients. Compared with HIV-uninfected patients, the proportions of mycobacterium (p = 0.001), fungus (p < 0.001) and viruses (p < 0.001) were significantly higher, while the proportion of bacteria (p = 0.001) was significantly lower in HIV-infected patients. The higher positive rates of non-tuberculous mycobacteriosis (NTM, p = 0.022), Pneumocystis jirovecii (P. jirovecii) (p = 0.014), Talaromyces marneffei (T. marneffei) (p < 0.001) and cytomegalovirus (CMV) (p < 0.001) were observed in HIV-infected patients, compared with HIV-uninfected patients. In addition, compared with HIV-uninfected patients, the constituent ratio of T. marneffei (p < 0.001) in the fungus spectrum were significantly higher, while the constituent ratios of Candida (p < 0.001) and Aspergillus (p = 0.001) were significantly lower in HIV-infected patients. CONCLUSIONS Significant differences in the blood microbiota profiles exist between HIV-infected and HIV-uninfected patients with suspected sepsis.
Collapse
Affiliation(s)
- Qianhui Chen
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Zhong Chen
- Department of Infection and Immunology, The First Hospital of Changsha City, 410000, Hengyang, Hunan, China
- Hengyang Medical School, Graduate Collaborative Training Base of the First Hospital of Changsha, University of South China, Hengyang, Hunan, China
| | - Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Jie Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Shihui Song
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Qian Du
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Min Wang
- Department of Infection and Immunology, The First Hospital of Changsha City, 410000, Hengyang, Hunan, China.
- Hengyang Medical School, Graduate Collaborative Training Base of the First Hospital of Changsha, University of South China, Hengyang, Hunan, China.
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Chen Z, Ye T, He Y, Pan A, Mei Q. Use of pus metagenomic next-generation sequencing for efficient identification of pathogens in patients with sepsis. Folia Microbiol (Praha) 2024; 69:1003-1011. [PMID: 38341816 PMCID: PMC11379781 DOI: 10.1007/s12223-024-01134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
The positive detection rate of blood metagenomic next-generation sequencing (mNGS) was still too low to meet clinical needs, while pus from the site of primary infection may be advantageous for identification of pathogens. To assess the value of mNGS using pus in patients with sepsis, thirty-five samples were collected. Pathogen identification and mixed infection diagnosis obtained by use of mNGS or cultivation methods were compared. Fifty-three aerobic or facultative anaerobes, 59 obligate anaerobes and 7 fungi were identified by the two methods. mNGS increased the accuracy rate of diagnosing aerobic or facultative anaerobic infections from 44.4% to 94.4%; mNGS also increased the sensitivity of diagnosing obligate anaerobic infections from 52.9% to 100.0%; however, mNGS did not show any advantage in terms of fungal infections. Culture and mNGS identified 1 and 24 patients with mixed infection, respectively. For obligate anaerobes, source of microorganisms was analyzed. The odontogenic bacteria all caused empyema (n = 7) or skin and soft tissue infections (n = 5), whereas the gut-derived microbes all caused intra-abdominal infections (n = 7). We also compared the clinical characteristics of non-obligate anaerobic and obligate anaerobic infection groups. The SOFA score [9.0 (7.5, 14.3) vs. 5.0 (3.0, 8.0), P = 0.005], procalcitonin value [4.7 (1.8, 39.9) vs. 2.50 (0.7, 8.0), P = 0.035], the proportion of septic shock (66.7% vs. 35.3%, P = 0.044) and acute liver injury (66.7% vs. 23.5%, P = 0.018) in the non-obligate anaerobic infection group were significantly higher than those in the obligate anaerobic infection group. In patients with sepsis caused by purulent infection, mNGS using pus from the primary lesion may yield more valuable microbiological information.
Collapse
Affiliation(s)
- Zhendong Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tingting Ye
- Department of Cardiovascular Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuxi He
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Aijun Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Intensive Care Unit, The Affiliated Provincial Hospital of Anhui Medical University, Anhui, 230001, China.
- WanNan Medical College, Wuhu, 241002, Anhui, China.
| | - Qing Mei
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
3
|
Shao H, Zhang X, Li Y, Gao Y, Wang Y, Shao X, Dai L. Epidemiology and drug resistance analysis of bloodstream infections in an intensive care unit from a children's medical center in Eastern China for six consecutive years. Int Microbiol 2024; 27:1345-1355. [PMID: 38233723 PMCID: PMC11452477 DOI: 10.1007/s10123-024-00481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Children in the intensive care unit (ICU) who suffer from severe basic diseases and low immunity are usually in critical condition. It is crucial to assist clinicians in selecting the appropriate empirical antibiotic therapies for clinical infection control. METHODS We retrospectively analyzed data from 281 children with bloodstream infection (BSI). Comparisons of basic data, pathogenic information, and drug resistance of the main bacteria were conducted. RESULTS We detected 328 strains, including Gram-positive bacteria (223, 68%), mainly coagulase-negative Staphylococci (CoNS); Gram-negative bacteria (91, 27.7%); and fungi (14, 4.3%). The results of the binary logistic regression analysis showed that the main basic disease was an independent risk factor for death. Compared with Escherichia coli, Klebsiella pneumoniae exhibited a higher proportion of extended-spectrum β-lactamases (ESBLs), and its resistance to some β-lactamides and quinolones antibiotics were lower. Twenty-seven isolates of multidrug-resistant (MDR) bacteria were detected, of which carbapenem-resistant Acinetobacter baumannii (CRAB) accounted for the highest proportion (13, 48.2%). CONCLUSIONS CoNS was the principal pathogen causing BSI in children in the ICU of children, and Escherichia coli was the most common Gram-negative pathogen. The main basic disease was an independent risk factor for death. It is necessary to continuously monitor patients with positive blood cultures, pay special attention to detected MDR bacteria, and strengthen the management of antibiotics and prevention and control of nosocomial infections.
Collapse
Affiliation(s)
- Huijiang Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
| | - Xin Zhang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yang Li
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yuanyuan Gao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
| | - Yunzhong Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China.
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| | - Ling Dai
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92, Zhong Nan Street, Industrial Park, Suzhou, 215025, China.
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
4
|
Pan TJ, Luo WW, Zhang SS, Xie JY, Xu Z, Zhong YY, Zou XF, Gong HJ, Ye ML. The clinical application value of multi-site mNGS detection of patients with sepsis in intensive care units. BMC Infect Dis 2024; 24:920. [PMID: 39232674 PMCID: PMC11375821 DOI: 10.1186/s12879-024-09822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Sepsis remains a leading cause of mortality in intensive care units, and rapid and accurate pathogen detection is crucial for effective treatment. This study evaluated the clinical application of multi-site metagenomic next-generation sequencing (mNGS) for the diagnosis of sepsis, comparing its performance against conventional methods. METHODS A retrospective analysis was conducted on 69 patients with sepsis consecutively admitted to the Department of Intensive Care Medicine, Meizhou People's Hospital. Samples of peripheral blood and infection sites were collected for mNGS and conventional method tests to compare the positive rate of mNGS and traditional pathogen detection methods and the distribution of pathogens. The methods used in this study included a comprehensive analysis of pathogen consistency between peripheral blood and infection site samples. Additionally, the correlation between the pathogens detected and clinical outcomes was investigated. RESULTS Of the patients with sepsis, 57.97% experienced dyspnea, and 65.2% had underlying diseases, with hypertension being the most common. mNGS demonstrated a significantly higher pathogen detection rate (88%) compared to the conventional method tests (26%). The pathogen consistency rate was 60% between plasma and bronchoalveolar lavage fluid samples, and that of plasma and local body fluid samples was 63%. The most frequently detected pathogens were gram-negative bacteria, and Klebsiella pneumonia. There were no significant differences in the clinical features between the pathogens. CONCLUSION mNGS is significantly superior to conventional methods in pathogen detection. There was a notable high pathogen consistency detection between blood and local body fluid samples, supporting the clinical relevance of mNGS. This study highlights the superiority of mNGS in detecting a broad spectrum of pathogens quickly and accurately. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Ting-Jun Pan
- The Fourth Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| | - Wei-Wen Luo
- The Fourth Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Song-Sheng Zhang
- The Fourth Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Jie-Yao Xie
- The Fourth Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Zhou Xu
- The Fourth Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Ying-Yu Zhong
- The First Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Xiao-Fen Zou
- The First Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Hui-Juan Gong
- The Fourth Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Mei-Ling Ye
- The First Department of Intensive Care Medicine, Meizhou People's Hospital, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| |
Collapse
|
5
|
Guo Q, Zhang S. Clinical applications and challenges of metagenomic next-generation sequencing in the diagnosis of pediatric infectious disease. J LAB MED 2024; 48:97-106. [DOI: 10.1515/labmed-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Abstract
Infectious diseases seriously threaten the lives of children. Timely and accurate detection of pathogenic microorganisms and targeted medication are the keys to the diagnosing and treatment of infectious diseases in children. The next-generation metagenomic sequencing technology has attracted great attention in infectious diseases because of its characteristics such as no culture, high throughput, short detection cycle, wide coverage, and a good application prospect. In this paper, we review the studies of metagenomic next-generation sequencing in pediatric infectious diseases and analyze the challenges of its application in pediatric diseases.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Clinical Laboratory , Anhui Children’s Hospital , Hefei , P.R. China
| | - Shihai Zhang
- Department of Clinical Laboratory , Anhui Children’s Hospital , Hefei , P.R. China
| |
Collapse
|
6
|
Cao L, Yang H, Huang Z, Lu C, Chen F, Zhang J, Ye P, Yan J, Zhang H. Direct prediction of antimicrobial resistance in Pseudomonas aeruginosa by metagenomic next-generation sequencing. Front Microbiol 2024; 15:1413434. [PMID: 38903781 PMCID: PMC11187003 DOI: 10.3389/fmicb.2024.1413434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Objective Pseudomonas aeruginosa has strong drug resistance and can tolerate a variety of antibiotics, which is a major problem in the management of antibiotic-resistant infections. Direct prediction of multi-drug resistance (MDR) resistance phenotypes of P. aeruginosa isolates and clinical samples by genotype is helpful for timely antibiotic treatment. Methods In the study, whole genome sequencing (WGS) data of 494 P. aeruginosa isolates were used to screen key anti-microbial resistance (AMR)-associated genes related to imipenem (IPM), meropenem (MEM), piperacillin/tazobactam (TZP), and levofloxacin (LVFX) resistance in P. aeruginosa by comparing genes with copy number differences between resistance and sensitive strains. Subsequently, for the direct prediction of the resistance of P. aeruginosa to four antibiotics by the AMR-associated features screened, we collected 74 P. aeruginosa positive sputum samples to sequence by metagenomics next-generation sequencing (mNGS), of which 1 sample with low quality was eliminated. Then, we constructed the resistance prediction model. Results We identified 93, 88, 80, 140 AMR-associated features for IPM, MEM, TZP, and LVFX resistance in P. aeruginosa. The relative abundance of AMR-associated genes was obtained by matching mNGS and WGS data. The top 20 features with importance degree for IPM, MEM, TZP, and LVFX resistance were used to model, respectively. Then, we used the random forest algorithm to construct resistance prediction models of P. aeruginosa, in which the areas under the curves of the IPM, MEM, TZP, and LVFX resistance prediction models were all greater than 0.8, suggesting these resistance prediction models had good performance. Conclusion In summary, mNGS can predict the resistance of P. aeruginosa by directly detecting AMR-associated genes, which provides a reference for rapid clinical detection of drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Huilin Yang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zhigang Huang
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chang Lu
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Jiahao Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| | - Peng Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jinjin Yan
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Zhai T, Ren W, Ji X, Wang Y, Chen H, Jin Y, Liang Q, Zhang N, Huang J. Distinct compositions and functions of circulating microbial DNA in the peripheral blood compared to fecal microbial DNA in healthy individuals. mSystems 2024; 9:e0000824. [PMID: 38426796 PMCID: PMC10949464 DOI: 10.1128/msystems.00008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The crucial function of circulating microbial DNA (cmDNA) in peripheral blood is gaining recognition because of its importance in normal physiology and immunity in healthy individuals. Evidence suggests that cmDNA in peripheral blood is derived from highly abundant, translocating gut microbes. However, the associations with and differences between cmDNA in peripheral blood and the gut microbiome remain unclear. We collected blood, urine, and fecal samples from volunteers to compare their microbial information via 16S rDNA sequencing. The results revealed that, compared with gut microbial DNA, cmDNA in peripheral blood was associated with reduced diversity and a distinct microbiota composition. The cmDNA in the blood reflects the biochemical processes of microorganisms, including synthesis, energy conversion, degradation, and adaptability, surpassing that of fecal samples. Interestingly, cmDNA in blood showed a limited presence of DNA from anaerobes and gram-positive bacteria, which contrast with the trend observed in fecal samples. Furthermore, analysis of cmDNA revealed traits associated with mobile elements and potential pathologies, among others, which were minimal in stool samples. Notably, cmDNA analysis indicated similarities between the microbial functions and phenotypes in blood and urine samples, although greater diversity was observed in urine samples. Source Tracker analysis suggests that gut microbes might not be the main source of blood cmDNA, or a selective mechanism allows only certain microbial DNA into the bloodstream. In conclusion, our study highlights the composition and potential functions associated with cmDNA in peripheral blood, emphasizing its selective presence; however, further research is required to elucidate the mechanisms involved.IMPORTANCEOur research provides novel insights into the unique characteristics and potential functional implications of circulating microbial DNA (cmDNA) in peripheral blood. Unlike other studies that analyzed sequencing data from fecal or blood microbiota in different study cohorts, our comparative analysis of cmDNA from blood, urine, and fecal samples from the same group of volunteers revealed a distinct blood-specific cmDNA composition. We discovered a decreased diversity of microbial DNA in blood samples compared to fecal samples as well as an increased presence of biochemical processes microbial DNA in blood. Notably, we add to the existing knowledge by documenting a reduced abundance of anaerobes and gram-positive bacteria in blood compared to fecal samples according to the analysis of cmDNA and gut microbial DNA, respectively. This observation suggested that a potential selective barrier or screening mechanism might filter microbial DNA molecules, indicating potential selectivity in the translocation process which contrasts with the traditional view that cmDNA primarily originates from random translocation from the gut and other regions. By highlighting these differences, our findings prompt a reconsideration of the origin and role of cmDNA in blood circulation and suggest that selective processes involving more complex biological mechanisms may be involved.
Collapse
Affiliation(s)
- Taiyu Zhai
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Ren
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xufeng Ji
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yifei Wang
- College of Medical Technology, Beihua University, Jilin, China
| | - Haizhen Chen
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yuting Jin
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Qiao Liang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Yu J, Zhang L, Gao D, Wang J, Li Y, Sun N. Comparison of metagenomic next-generation sequencing and blood culture for diagnosis of bloodstream infections. Front Cell Infect Microbiol 2024; 14:1338861. [PMID: 38328669 PMCID: PMC10847245 DOI: 10.3389/fcimb.2024.1338861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Objectives This study aimed to evaluate the clinical performance of plasma cell-free DNA (cfDNA) next-generation sequencing (NGS) for pathogen detection in patients with sepsis. Methods A total of 43 pairs of blood and plasma samples form 33 blood culture-positive patients were used as testing samples in metagenomic NGS (mNGS) and NGS of 16S ribosomal RNA gene amplicons (16S rRNA NGS). The results of routine tests, including microbial culture, complete blood count, and biochemical tests, were collected from electronic medical records. Results Using blood as an mNGS testing sample, the proportion of host DNA was 99.9%, with only three bacteria and no fungi detected. When using plasma in mNGS, the proportion of host DNA was approximately 97%, with 84 bacteria and two fungi detected. Notably, 16S rRNA NGS detected 15 and 16 bacteria in 43 pairs of blood and plasma samples, respectively. Blood culture detected 49 bacteria (23 gram-negative bacilli and 26 gram-positive cocci) and four fungi, with 14 bacteria considered contaminants by clinical microbiologists. For all blood cultures, plasma cfDNA mNGS detected 78.26% (19/23) gram-negative rods, 17% (2/12) gram-positive cocci, and no fungi. Compared to blood cultures, the sensitivity and specificity of plasma cfDNA mNGS for detecting bacteria and fungi were 62.07% and 57.14%, respectively. Conclusion Compared to blood, plasma is more suitable for the detection of bloodstream infections using mNGS and is less affected by host DNA. The positive detection rate of plasma cfDNA mNGS for bloodstream infections caused by gram-negative bacteria was higher than that caused by gram-positive cocci.
Collapse
Affiliation(s)
- Juan Yu
- Department of Clinical Laboratory, Nanjing Lishui People’s Hospital, Nanjing, China
- Department of Clinical Laboratory Science, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Zhang
- Department of Clinical Laboratory, Nanjing Lishui People’s Hospital, Nanjing, China
| | - Deyu Gao
- Department of Clinical Laboratory Science, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Wang
- Clinical Medicine Research Center, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Yi Li
- Department of Clinical Laboratory Science, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ning Sun
- Department of Clinical Laboratory Science, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Pang F, Xu W, Zhao H, Chen S, Tian Y, Fu J, You Z, Song P, Xian Q, Zhao Q, Wang C, Jia X. Comprehensive evaluation of plasma microbial cell-free DNA sequencing for predicting bloodstream and local infections in clinical practice: a multicenter retrospective study. Front Cell Infect Microbiol 2024; 13:1256099. [PMID: 38362158 PMCID: PMC10868388 DOI: 10.3389/fcimb.2023.1256099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 02/17/2024] Open
Abstract
Background Metagenomic next-generation sequencing (mNGS) of plasma cell-free DNA (cfDNA) shows promising application for complicated infections that cannot be resolved by conventional microbiological tests (CMTs). The criteria for cfDNA sequencing are currently in need of agreement and standardization. Methods We performed a retrospective cohort observation of 653 patients who underwent plasma cfDNA mNGS, including 431 with suspected bloodstream infections (BSI) and 222 with other suspected systemic infections. Plasma mNGS and CMTs were performed simultaneously in clinical practice. The diagnostic efficacy of plasma mNGS and CMTs in the diagnosis of blood-borne and other systemic infections was evaluated using receiver operating characteristic (ROC) curves. The sensitivity and specificity of the two methods were analyzed based on the final clinical outcome as the gold standard. Results The mNGS test showed an overall positive rate of 72.3% (472/653) for detecting microorganisms in plasma cfDNA, with a range of 2 to 6 different microorganisms detected in 171 patient specimens. Patients with positive mNGS results were more immunocompromised and had a higher incidence of severe disease (P<0·05). The sensitivity of mNGS was higher for BSI (93·5%) and other systemic infections (83·6%) compared to CMTs (37·7% and 14·3%, respectively). The mNGS detected DNA from a total of 735 microorganisms, with the number of microbial DNA reads ranging from 3 to 57,969, and a higher number of reads being associated with clinical infections (P<0·05). Of the 472 patients with positive mNGS results, clinical management was positively affected in 203 (43%) cases. Negative mNGS results led to a modified clinical management regimen in 92 patients (14.1%). The study also developed a bacterial and fungal library for plasma mNGS and obtained comparisons of turnaround times and detailed processing procedures for rare pathogens. Conclusion Our study evaluates the clinical use and analytic approaches of mNGS in predicting bloodstream and local infections in clinical practice. Our results suggest that mNGS has higher positive predictive values (PPVs) for BSI and systemic infections compared to CMTs, and can positively affect clinical management in a significant number of patients. The standardized whole-process management procedure for plasma mNGS developed in this study will ensure improved pre-screening probabilities and yield clinically valuable data.
Collapse
Affiliation(s)
- Feng Pang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Wenbin Xu
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Hui Zhao
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Shuai Chen
- Department of Clinical Laboratory, Liaocheng Thrid People’s Hospital, Liaocheng, Shandong, China
| | - Yaxian Tian
- Department of Center Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juanjuan Fu
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Zhiqing You
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Pingping Song
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Qingjie Xian
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Qigang Zhao
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chengtan Wang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xiuqin Jia
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| |
Collapse
|
10
|
Mao Q, Liu Y, Zhang J, Li W, Zhang W, Zhou C. Blood virome of patients with traumatic sepsis. Virol J 2023; 20:198. [PMID: 37658428 PMCID: PMC10472630 DOI: 10.1186/s12985-023-02162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Sepsis is one of the possible outcomes of severe trauma, and it poses a dire threat to human life, particularly in immunocompromised people. The most prevalent pathogens are bacteria and fungi, but viruses should not be overlooked. For viral metagenomic analysis, we collected blood samples from eight patients with post-traumatic sepsis before and seven days after treatment. The results demonstrated that Anellovirus predominated the viral community, followed by Siphoviridae and Myoviridae, and that the variations in viral community and viral load before and after treatment were not statistically significant. This study allows us to investigate methods for establishing NGS-based viral diagnostic instruments for detecting viral infections in the blood of sepsis patients so that antiviral therapy can be administered quickly.
Collapse
Affiliation(s)
- Qingqing Mao
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Liu
- Clinical Laboratory Center, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Ju Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wang Li
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Chenglin Zhou
- Clinical Laboratory Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
11
|
Shen H, Liu T, Shen M, Zhang Y, Chen W, Chen H, Wang Y, Liu J, Tao J, He L, Lu G, Yan G. Utilizing metagenomic next-generation sequencing for diagnosis and lung microbiome probing of pediatric pneumonia through bronchoalveolar lavage fluid in pediatric intensive care unit: results from a large real-world cohort. Front Cell Infect Microbiol 2023; 13:1200806. [PMID: 37655299 PMCID: PMC10466250 DOI: 10.3389/fcimb.2023.1200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Background Metagenomic next-generation sequencing (mNGS) is a powerful method for pathogen detection in various infections. In this study, we assessed the value of mNGS in the pathogen diagnosis and microbiome analysis of pneumonia in pediatric intensive care units (PICU) using bronchoalveolar lavage fluid (BALF) samples. Methods A total of 104 pediatric patients with pneumonia who were admitted into PICU between June 2018 and February 2020 were retrospectively enrolled. Among them, 101 subjects who had intact clinical information were subject to parallel comparison of mNGS and conventional microbiological tests (CMTs) for pathogen detection. The performance was also evaluated and compared between BALF-mNGS and BALF-culture methods. Moreover, the diversity and structure of all 104 patients' lung BALF microbiomes were explored using the mNGS data. Results Combining the findings of mNGS and CMTs, 94.06% (95/101) pneumonia cases showed evidence of causative pathogenic infections, including 79.21% (80/101) mixed and 14.85% (15/101) single infections. Regarding the pathogenesis of pneumonia in the PICU, the fungal detection rates were significantly higher in patients with immunodeficiency (55.56% vs. 25.30%, P =0.025) and comorbidities (40.30% vs. 11.76%, P=0.007). There were no significant differences in the α-diversity either between patients with CAP and HAP or between patients with and without immunodeficiency. Regarding the diagnostic performance, the detection rate of DNA-based BALF-mNGS was slightly higher than that of the BALF-culture although statistically insignificant (81.82% vs.77.92%, P=0.677) and was comparable to CMTs (81.82% vs. 89.61%, P=0.211). The overall sensitivity of DNA-based mNGS was 85.14% (95% confidence interval [CI]: 74.96%-92.34%). The detection rate of RNA-based BALF-mNGS was the same with CMTs (80.00% vs 80.00%, P>0.999) and higher than BALF-culture (80.00% vs 52.00%, P=0.045), with a sensitivity of 90.91% (95%CI: 70.84%-98.88%). Conclusions mNGS is valuable in the etiological diagnosis of pneumonia, especially in fungal infections, and can reveal pulmonary microecological characteristics. For pneumonia patients in PICU, the mNGS should be implemented early and complementary to CMTs.
Collapse
Affiliation(s)
- Huili Shen
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Tingyan Liu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Meili Shen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, Jiangsu, China
| | - Yi Zhang
- Department of Clinical Epidemiology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Weiming Chen
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Hanlin Chen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, Jiangsu, China
| | - Yixue Wang
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jing Liu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jinhao Tao
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Liming He
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Gangfeng Yan
- Pediatric Intensive Care Unit, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
12
|
He S, Wei J, Feng J, Liu D, Wang N, Chen L, Xiong Y. The application of metagenomic next-generation sequencing in pathogen diagnosis: a bibliometric analysis based on Web of Science. Front Cell Infect Microbiol 2023; 13:1112229. [PMID: 37600953 PMCID: PMC10434771 DOI: 10.3389/fcimb.2023.1112229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Infectious disease is a large burden on public health globally. Metagenomic next-generation sequencing (mNGS) has become popular as a new tool for pathogen diagnosis with numerous advantages compared to conventional methods. Recently, research on mNGS increases yearly. However, no bibliometric analysis has systematically presented the full spectrum of this research field. Therefore, we reviewed all the publications associated with this topic and performed this study to analyze the comprehensive status and future hotspots of mNGS for infectious disease diagnosis. Methods The literature was searched in the Web of Science Core Collection and screened without year or language restrictions, and the characteristics of the studies were also identified. The outcomes included publication years, study types, journals, countries, authorship, institutions, frontiers, and hotspots with trends. Statistical analysis and visualization were conducted using VOSviewer (version 1.6.16) and CiteSpace (version 6.1. R3). Results In total, 325 studies were included in the analysis after screening. Studies were published between 2009 and 2022 with a significantly increasing number from 1 to 118. Most of the studies were original articles and case reports. Frontiers in Cellular and Infection Microbiology and Clinical Infectious Disease were the most commonly cited and co-cited journals. Institutions and researchers from China contributed the most to this field, followed by those from the USA. The hotspots and frontiers of these studies are pneumonia, tuberculosis, and central nervous system infections. Conclusion This study determined that mNGS is a hot topic in the diagnosis of infectious diseases with development trends and provides insights into researchers, institutions, hotspots and frontiers in mNGS, which can offer references to related researchers and future research.
Collapse
Affiliation(s)
- Sike He
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwen Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| | - Neng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xiong
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Liu Q, Liu X, Hu B, Xu H, Sun R, Li P, Zhang Y, Yang H, Ma N, Sun X. Diagnostic performance and clinical impact of blood metagenomic next-generation sequencing in ICU patients suspected monomicrobial and polymicrobial bloodstream infections. Front Cell Infect Microbiol 2023; 13:1192931. [PMID: 37434786 PMCID: PMC10330723 DOI: 10.3389/fcimb.2023.1192931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Early and effective application of antimicrobial medication has been evidenced to improve outcomes of patients with bloodstream infection (BSI). However, conventional microbiological tests (CMTs) have a number of limitations that hamper a rapid diagnosis. Methods We retrospectively collected 162 cases suspected BSI from intensive care unit with blood metagenomics next-generation sequencing (mNGS) results, to comparatively evaluate the diagnostic performance and the clinical impact on antibiotics usage of mNGS. Results and discussion Results showed that compared with blood culture, mNGS detected a greater number of pathogens, especially for Aspergillus spp, and yielded a significantly higher positive rate. With the final clinical diagnosis as the standard, the sensitivity of mNGS (excluding viruses) was 58.06%, significantly higher than that of blood culture (34.68%, P<0.001). Combing blood mNGS and culture results, the sensitivity improved to 72.58%. Forty-six patients had infected by mixed pathogens, among which Klebsiella pneumoniae and Acinetobacter baumannii contributed most. Compared to monomicrobial, cases with polymicrobial BSI exhibited dramatically higher level of SOFA, AST, hospitalized mortality and 90-day mortality (P<0.05). A total of 101 patients underwent antibiotics adjustment, among which 85 were adjusted according to microbiological results, including 45 cases based on the mNGS results (40 cases escalation and 5 cases de-escalation) and 32 cases on blood culture. Collectively, for patients suspected BSI in critical condition, mNGS results can provide valuable diagnostic information and contribute to the optimizing of antibiotic treatment. Combining conventional tests with mNGS may significantly improve the detection rate for pathogens and optimize antibiotic treatment in critically ill patients with BSI.
Collapse
Affiliation(s)
- Qilong Liu
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bingxue Hu
- Department of Scientific Affairs, Vision Medicals for Infectious Diseases, Guangzhou, Guangdong Province, China
| | - Huan Xu
- Department of Scientific Affairs, Vision Medicals for Infectious Diseases, Guangzhou, Guangdong Province, China
| | - Rongqing Sun
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pengfei Li
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunwei Zhang
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hongfu Yang
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ning Ma
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoge Sun
- Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Zhang C, Liu T, Wang Y, Chen W, Liu J, Tao J, Zhang Z, Zhu X, Zhang Z, Ming M, Wang M, Lu G, Yan G. Metagenomic next-generation sequencing of bronchoalveolar lavage fluid from children with severe pneumonia in pediatric intensive care unit. Front Cell Infect Microbiol 2023; 13:1082925. [PMID: 37009495 PMCID: PMC10064343 DOI: 10.3389/fcimb.2023.1082925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/11/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundSevere pneumonia due to lower respiratory tract infections (LRTIs) is a significant cause of morbidity and mortality in children. Noninfectious respiratory syndromes resembling LRTIs can complicate the diagnosis and may also make targeted therapy difficult because of the difficulty of identifying LRTI pathogens. In the present study, a highly sensitive metagenomic next-generation sequencing (mNGS) approach was used to characterize the microbiome of bronchoalveolar lavage fluid (BALF) in children with severe lower pneumonia and identify pathogenic microorganisms that may cause severe pneumonia. The purpose of this study was to use mNGS to explore the potential microbiomes of children with severe pneumonia in a PICU.MethodsWe enrolled patients meeting diagnostic criteria for severe pneumonia admitted at PICU of the Children’s Hospital of Fudan University, China, from February 2018 to February 2020. In total, 126 BALF samples were collected, and mNGS was performed at the DNA and/or RNA level. The pathogenic microorganisms in BALF were identified and correlated with serological inflammatory indicators, lymphocyte subtypes, and clinical symptoms.ResultsmNGS of BALF identified potentially pathogenic bacteria in children with severe pneumonia in the PICU. An increased BALF bacterial diversity index was positively correlated with serum inflammatory indicators and lymphocyte subtypes. Children with severe pneumonia in the PICU had the potential for coinfection with viruses including Epstein–Barr virus, Cytomegalovirus, and Human betaherpesvirus 6B, the abundance of which was positively correlated with immunodeficiency and pneumonia severity, suggesting that the virus may be reactivated in children in the PICU. There was also the potential for coinfection with fungal pathogens including Pneumocystis jirovecii and Aspergillus fumigatus in children with severe pneumonia in the PICU, and an increase in potentially pathogenic eukaryotic diversity in BALF was positively associated with the occurrence of death and sepsis.ConclusionsmNGS can be used for clinical microbiological testing of BALF samples from children in the PICU. Bacterial combined with viral or fungal infections may be present in the BALF of patients with severe pneumonia in the PICU. Viral or fungal infections are associated with greater disease severity and death.
Collapse
Affiliation(s)
- Caiyan Zhang
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Tingyan Liu
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Yixue Wang
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Weiming Chen
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing Liu
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Jinhao Tao
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhengzheng Zhang
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Xuemei Zhu
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Zhenyu Zhang
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Meixiu Ming
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
| | - Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children’s Hospital of Fudan University, National Center for Children’s Health, Shanghai, China
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
- *Correspondence: Gangfeng Yan, ; Guoping Lu, ; Mingbang Wang,
| | - Guoping Lu
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Gangfeng Yan, ; Guoping Lu, ; Mingbang Wang,
| | - Gangfeng Yan
- Paediatric Intensive Care Unit, Children’s Hospital of Fudan University, Shanghai, China
- *Correspondence: Gangfeng Yan, ; Guoping Lu, ; Mingbang Wang,
| |
Collapse
|
15
|
Xiao YH, Liu MF, Wu H, Xu DR, Zhao R. Clinical Efficacy and Diagnostic Value of Metagenomic Next-Generation Sequencing for Pathogen Detection in Patients with Suspected Infectious Diseases: A Retrospective Study from a Large Tertiary Hospital. Infect Drug Resist 2023; 16:1815-1828. [PMID: 37016633 PMCID: PMC10066896 DOI: 10.2147/idr.s401707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose Metagenomic next-generation sequencing (mNGS) is a powerful yet unbiased method to identify pathogens in suspected infections. However, little is known about its clinical effectiveness. The present study aimed to assess the efficacy of mNGS in routine clinical practice. Patients and Methods In this single-center retrospective cohort study, 518 patients with suspected infectious diseases were assessed for inclusion. Among them, each patient had undergone mNGS testing; 407 patients had undergone both microbial culture and mNGS testing. The result of mNGS testing was compared to microbial culture performed concurrently. The diagnostic performance of mNGS was evaluated using the comprehensive clinical diagnosis as the reference standard. Results There was a significant difference in the positive detection rates of pathogens between mNGS and culture (331/407, 81.3% vs 79/407, 19.4%, P < 0.001). The sensitivity of mNGS was much higher than the culture method (79.5% vs 21.3%, P < 0.001), especially in sample types of sputum and bronchoalveolar lavage fluid (BALF). Notably, the sensitivity of blood mNGS was relatively lower than other sample types (67.4% vs 88.9-93.8%). Pathogen cfDNA load based on standardized stringently mapped read number at the species level of microorganisms (SDSMRN) was significantly lower in blood than in other sample types from the same patient (P = 0.0003). Importantly, mNGS directly led to a change of treatment regimen in 142 (27.4%) cases, including antibiotic escalation (15.3%), antibiotic de-escalation (9.1%), and early definitive diagnosis to initiate appropriate treatment (3.1%). Conclusion Our in-house mNGS platform significantly improved the sensitivity for the diagnosis of infectious diseases. mNGS has the potential to improve clinical outcomes by optimizing antimicrobial therapy.
Collapse
Affiliation(s)
- Yang-Hua Xiao
- Department of Clinical Laboratory, Medical Center for Burn and Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- School of Public Health, Nanchang University, Nanchang, People’s Republic of China
| | - Mei-Fang Liu
- Department of Clinical Laboratory, Medical Center for Burn and Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Hongwen Wu
- Department of Clinical Laboratory, Medical Center for Burn and Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Medical Instruments, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - De-Rong Xu
- Department of Clinical Laboratory, Medical Center for Burn and Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: De-Rong Xu; Rui Zhao, Email ;
| | - Rui Zhao
- Department of Clinical Laboratory, Medical Center for Burn and Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
16
|
Wei Y, Zhang T, Ma Y, Yan J, Zhan J, Zheng J, Xu Y. Clinical Evaluation of Metagenomic Next-Generation Sequencing for the detection of pathogens in BALF in severe community acquired pneumonia. Ital J Pediatr 2023; 49:25. [PMID: 36805803 PMCID: PMC9938609 DOI: 10.1186/s13052-023-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Rapid and accurate identification of pathogens is very important for the treatment of Severe community-acquired pneumonia (SCAP) in children. Metagenomic Next-generation sequencing (mNGS) has been applied in the detection of pathogenic bacteria in recent years, while the overall evaluation the application of SCAP in children is lacking. METHODS In our study, 84 cases of SCAP were enrolled. Bronchoalveolar lavage fluid (BALF) samples were analysed using mNGS; and sputum, blood, and BALF samples were analysed using conventional technology (CT). RESULTS Among the 84 children, 41 were boys, and 43 were girls, with an average age ranging from 2 months to 14 years. The pathogen detection rate of mNGS was higher than that of CT (83.3% [70/84] vs. 63.1% [53/84], P = 0.003). The mNGS was much greater than that of the CT in detecting Streptococcus pneumoniae (89.2% [25/29] vs. 44.8% [13/29], P = 0.001) and Haemophilus influenzae (91.7% [11/12] vs. 33.3% [4/12], P < 0.005). The mNGS also showed superior fungal detection performance compared with that of the CT (81.8% [9/11] vs. 18.2% [2/11], P = 0.004). The mNGS test can detect viruses, such as bocavirus, rhinovirus, and human metapneumovirus, which are not frequently recognised using CT. However, the mNGS detection rate was lower than that of the CT (52.4% [11/21] vs. 95.2% [20/21], P = 0.004) for Mycoplasma pneumoniae (MP). The detection rate of mNGS for mixed infection was greater than that of the CT, although statistical significance was not observed (26.3% [20/39] vs. 21.1% [16/39], P > 0.005). Treatment for 26 (31.0%) children was changed based on mNGS results, and their symptoms were reduced; nine patients had their antibiotic modified, five had antibiotics added, nine had their antifungal medication, and seven had their antiviral medication. CONCLUSION mNGS has unique advantages in the detection of SCAP pathogens in children, especially S. pneumoniae, H. influenzae, and fungi. However, the detection rate of MP using mNGS was lower than that of the CT. Additionally, mNGS can detect pathogens that are not generally covered by CT, which is extremely important for the modification of the treatment strategy.
Collapse
Affiliation(s)
- Yupeng Wei
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Respiratory Medicine, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China ,grid.410626.70000 0004 1798 9265Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Tongqiang Zhang
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Respiratory Medicine, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China
| | - Yuting Ma
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Infection, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China
| | - Jisi Yan
- grid.265021.20000 0000 9792 1228Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China ,grid.417022.20000 0004 1772 3918Department of Respiratory Medicine, Tianjin Children’s Hospital (Tianjin University Children’s Hospital), Tianjin, China ,grid.410626.70000 0004 1798 9265Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Jianghua Zhan
- Department of Pediatric Surgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.
| | - Jun Zheng
- Department of Neonatology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China.
| | - Yongsheng Xu
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.
| |
Collapse
|
17
|
Chen H, Liang Y, Wang R, Wu Y, Zhang X, Huang H, Yu X, Hong M, Yang J, Liao K, Xu H, Liu M, Chen P, Chen Y. Metagenomic next-generation sequencing for the diagnosis of Pneumocystis jirovecii Pneumonia in critically pediatric patients. Ann Clin Microbiol Antimicrob 2023; 22:6. [PMID: 36647095 PMCID: PMC9841943 DOI: 10.1186/s12941-023-00555-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of metagenomic next-generation sequencing (mNGS) for the diagnosis of Pneumocystis jirovecii Pneumonia (PCP) in critically pediatric patients. METHODS Seventeen critically pediatric patients with PCP and sixty patients diagnosed with non-PCP pneumonia who were admitted in pediatric intensive care unit between June 2018 and July 2021 were enrolled. Conventional methods and mNGS for detecting Pneumocystis jirovecii (P. jirovecii) were compared. The patients' demographics, comorbidities, laboratory test results, antibiotic treatment response and 30 day mortality were analyzed. RESULT The mNGS showed a satisfying diagnostic performance with a sensitivity of 100% in detecting P. jirovecii compared with Gomori methenamine silver staining (5.9%), serum (1,3)-β-D-glucan (86.7%) and and LDH (55.6%). The diagnostic specificity of mNGS for PCP was higher than that of serum BDG (56.7%) and LDH (71.4%). In PCP group, over one thirds' cases had mixed infections. Compared with survivors, non-survivors had higher stringently mapped read numbers (SMRNs) in bronchoalveolar lavage fluid (BALF) sample (P < 0.05), suggesting SMRNs were closely associated with the severity of response. The detection for P. jirovecii by mNGS both in BALF and blood samples reached a concordance rate of 100%, and the SMRNs in the BALF were remarkably higher than that in blood samples. Initial antimicrobial treatment was modified in 88.2% of PCP patients based on the mNGS results. CONCLUSION The mNGS is a potential and efficient technology in diagnosing PCP and shows a satisfying performance in the detection of co-pathogens. Both blood and BALF samples for mNGS are suggested for the presumptive diagnosis of PCP.
Collapse
Affiliation(s)
- Hengxin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yujian Liang
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ruizhi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yijie Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Xiaoyun Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong, China
| | - Hao Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xuegao Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Mengzhi Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Juhua Yang
- Vision Medicals Co., Ltd, Guangzhou, China
| | - Kang Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hongxu Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Min Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Yili Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
18
|
Liu G, Wang L, Li X, Zhang Y, Long H, Wang Y, Gao H, Xia H, Qian S. The value of next-generation metagenomic sequencing in pathogen detection of pleural effusions and ascites from children with sepsis. Front Cell Infect Microbiol 2023; 13:1130483. [PMID: 36891155 PMCID: PMC9986937 DOI: 10.3389/fcimb.2023.1130483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Objective To investigate the diagnostic value of metagenomic next-generation sequencing (mNGS) using pleural effusion and ascites from children with sepsis. Methods In this study, children with sepsis or severe sepsis and appeared pleural or peritoneal effusions were enrolled, of whom the pleural effusions or ascites and blood samples were conducted pathogen detection using both conventional and mNGS methods. The samples were divided into pathogen-consistent and pathogen-inconsistent groups based on the consistency of mNGS results from different sample types, and into exudate and transudate groups based on their pleural effusion and ascites properties. The pathogen positive rates, pathogen spectrum, consistency between different sample types, and clinical diagnosis consistency were compared between mNGS and conventional pathogen tests. Results A total of 42 pleural effusions or ascites and 50 other type samples were collected from 32 children. The pathogen positive rate of the mNGS test was significantly higher than that of traditional methods (78.57% vs. 14.29%, P < 0.001) in pleural effusion and ascites samples, with a consistent rate of 66.67% between the two methods. Nearly 78.79% (26/33) of mNGS positive results of the pleural effusions and ascites samples were consistent with clinical evaluation, and 81.82% (27/33) of these positive samples reported 1-3 pathogens. The pathogen-consistent group outperformed the pathogen-inconsistent group in terms of consistency with respect to clinical evaluation (88.46% vs. 57.14%, P = 0.093), while there was no significant difference between the exudate and transudate groups (66.67% vs. 50.00%, P = 0.483). Conclusion Compared to conventional methods, mNGS has great advantages in pathogen detection of pleural effusion and ascites samples. Moreover, consistent results of mNGS tests with different sample types provide more reference values in clinical diagnosis.
Collapse
Affiliation(s)
- Gang Liu
- Department of Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Lijuan Wang
- Department of Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuming Li
- Department of scientific affairs, HugoBiotech Co., Ltd., Beijing, China
| | - Ye Zhang
- Department of scientific affairs, HugoBiotech Co., Ltd., Beijing, China
| | - Hu Long
- Department of scientific affairs, HugoBiotech Co., Ltd., Beijing, China
| | - Yi Wang
- Department of Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hengmiao Gao
- Department of Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Han Xia
- Department of scientific affairs, HugoBiotech Co., Ltd., Beijing, China
- *Correspondence: Suyun Qian, ; Han Xia,
| | - Suyun Qian
- Department of Pediatric Intensive Care Unit, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Suyun Qian, ; Han Xia,
| |
Collapse
|
19
|
Agudelo-Pérez S, Fernández-Sarmiento J, Rivera León D, Peláez RG. Metagenomics by next-generation sequencing (mNGS) in the etiological characterization of neonatal and pediatric sepsis: A systematic review. Front Pediatr 2023; 11:1011723. [PMID: 37063664 PMCID: PMC10098018 DOI: 10.3389/fped.2023.1011723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction Pediatric and neonatal sepsis is one of the main causes of mortality and morbidity in these age groups. Accurate and early etiological identification is essential for guiding antibiotic treatment, improving survival, and reducing complications and sequelae. Currently, the identification is based on culture-dependent methods, which has many limitations for its use in clinical practice, and obtaining its results is delayed. Next-generation sequencing enables rapid, accurate, and unbiased identification of multiple microorganisms in biological samples at the same time. The objective of this study was to characterize the etiology of neonatal and pediatric sepsis by metagenomic techniques. Methods A systematic review of the literature was carried out using the PRISMA-2020 guide. Observational, descriptive, and case report studies on pediatric patients were included, with a diagnostic evaluation by clinical criteria of sepsis based on the systemic inflammatory response, in sterile and non-sterile biofluid samples. The risk of bias assessment of the observational studies was carried out with the STROBE-metagenomics instrument and the CARE checklist for case reports. Results and Discussion Five studies with a total of 462 patients were included. Due to the data obtained from the studies, it was not possible to perform a quantitative synthesis (meta-analysis). Based on the data from the included studies, the result identified that mNGS improves the etiological identification in neonatal and pediatric sepsis, especially in the context of negative cultures and in the identification of unusual microorganisms (bacteria that are difficult to grow in culture, viruses, fungi, and parasites). The number of investigations is currently limited, and the studies are at high risk of bias. Further research using this technology would have the potential to improve the rational use of antibiotics.
Collapse
Affiliation(s)
- Sergio Agudelo-Pérez
- Department of Pediatrics, Faculty of Medicine, Universidad de La Sabana, Chia, Colombia
- Correspondence: Sergio Agudelo-Pérez
| | - Jaime Fernández-Sarmiento
- Department of Pediatrics, Faculty of Medicine, Universidad de La Sabana, Chia, Colombia
- Departament of Pediatrics and Critical Care, Fundación Cardioinfantil, Bogotá, Colombia
| | - Diana Rivera León
- Department of Pediatrics, Faculty of Medicine, Universidad de La Sabana, Chia, Colombia
| | - Ronald Guillermo Peláez
- Life Sciences and Health Research Group, Graduates School, CES University, Medellin, Colombia
| |
Collapse
|
20
|
Multisite Metagenomic Next-Generation Sequencing Improved Diagnostic Performance for Sepsis-Associated Lymphopenia Patients. Microbiol Spectr 2022; 10:e0353222. [PMID: 36453923 PMCID: PMC9769823 DOI: 10.1128/spectrum.03532-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A precise and efficient microbiological diagnosis is essential for sepsis. Metagenomic next-generation sequencing (mNGS) is a novel technique for the diagnosis of infectious diseases, but its current application in multisite sampling and interpretation remains controversial. Therefore, this study was undertaken to evaluate the reliability of multisite mNGS tests and the efficiency of plasma mNGS based on lymphocyte subset counts. A prospective observational study was performed on the intubated patients with sepsis-associated lymphopenia from January 2020 to February 2022. During the study period, data on 71 patients with sepsis-induced lymphopenia were collected. Among the 125 mNGS tests, 95 were positive for pathogens, whereas of the 166 conventional microbiological tests (CMTs), 91 were positive. The comparison showed that 38 patients (53.5%) had at least one matched pair of plasma mNGS and CMT results, while for multisite sampling, 47 patients (66.2%) had at least one. Lymphocyte subset analysis showed that T lymphocyte (577 ± 317 versus 395 ± 207, P = 0.005) and CD4+ T lymphocyte (333 ± 199 versus 230 ± 120, P = 0.009) counts were lower in the matched group. According to receiver operating characteristic (ROC) analysis, a CD4+ T lymphocyte count lower than 266 cells/mm3 was predictive of a match result. For sepsis-associated lymphopenia patients, we found that multisite mNGS tests showed a higher positivity rate. With plasma mNGS, a lower CD4+ T lymphocyte count predicted a better match result with CMT. The lymphocyte subset analysis may promote the clinical interpretation of mNGS results. IMPORTANCE This study was undertaken to evaluate the reliability of pathogenic diagnoses based on multisite mNGS detection at the clinically suspected sites and to analyze the efficiency of plasma mNGS detection based on lymphocyte subset counts in patients with sepsis-associated lymphopenia.
Collapse
|
21
|
Liu A, Cai C, Wang Z, Wang B, He J, Xie Y, Deng H, Liu S, Zeng S, Yin Z, Wang M. Inductively coupled plasma mass spectrometry based urine metallome to construct clinical decision models for autism spectrum disorder. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6849992. [PMID: 36442146 DOI: 10.1093/mtomcs/mfac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The global prevalence of autism spectrum disorder (ASD) is on the rise, and high levels of exposure to toxic heavy metals may be associated with this increase. Urine analysis is a noninvasive method for investigating the accumulation and excretion of heavy metals. The aim of this study was to identify ASD-associated urinary metal markers. METHODS Overall, 70 children with ASD and 71 children with typical development (TD) were enrolled in this retrospective case-control study. In this metallomics investigation, inductively coupled plasma mass spectrometry was performed to obtain the urine profile of 27 metals. RESULTS Children with ASD could be distinguished from children with TD based on the urine metal profile, with ASD children showing an increased urine metal Shannon diversity. A metallome-wide association analysis was used to identify seven ASD-related metals in urine, with cobalt, aluminum, selenium, and lithium significantly higher, and manganese, mercury, and titanium significantly lower in the urine of children with ASD than in children with TD. The least absolute shrinkage and selection operator (LASSO) machine learning method was used to rank the seven urine metals in terms of their effect on ASD. On the basis of these seven urine metals, we constructed a LASSO regression model for ASD classification and found an area under the receiver operating characteristic curve of 0.913. We also constructed a clinical prediction model for ASD based on the seven metals that were different in the urine of children with ASD and found that the model would be useful for the clinical prediction of ASD risk. CONCLUSIONS The study findings suggest that altered urine metal concentrations may be an important risk factor for ASD, and we recommend further exploration of the mechanisms and clinical treatment measures for such alterations.
Collapse
Affiliation(s)
- Aiping Liu
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People's Hospital, Guangdong 518109, China
| | - Bin Wang
- The department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Juntao He
- Shenzhen Prevention and Treatment Center for Occupational Diseases (Physical Testing & Chemical Analysis Department), Shenzhen 518020, China
| | - Yanhong Xie
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Honglian Deng
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Shaozhi Liu
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Shujuan Zeng
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| | - Zhaoqing Yin
- Division of Pediatrics, The People's Hospital of Dehong Autonomous Prefecture, Dehong Hospital of Kunming Medical University, Mangshi, Yunnan 678400, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China.,Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
22
|
Sun L, Zhang S, Yang Z, Yang F, Wang Z, Li H, Li Y, Sun T. Clinical Application and Influencing Factor Analysis of Metagenomic Next-Generation Sequencing (mNGS) in ICU Patients With Sepsis. Front Cell Infect Microbiol 2022; 12:905132. [PMID: 35909965 PMCID: PMC9326263 DOI: 10.3389/fcimb.2022.905132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To analyze the clinical application and related influencing factors of metagenomic next-generation sequencing (mNGS) in patients with sepsis in intensive care unit (ICU). Methods The study included 124 patients with severe sepsis admitted to the ICU in the First Affiliated Hospital of Zhengzhou University from June 2020 to September 2021. Two experienced clinicians took blood mNGS and routine blood cultures of patients meeting the sepsis diagnostic criteria within 24 hours after sepsis was considered, and collection the general clinical data. Results mNGS positive rate was higher than traditional blood culture (67.74% vs. 19.35%). APACHE II score [odds ratio (OR)=1.096], immune-related diseases (OR=6.544), and hypertension (OR=2.819) were considered as positive independent factors for mNGS or culture-positive. The sequence number of microorganisms and pathogen detection (mNGS) type had no effect on prognosis. Age (OR=1.016), female (OR=5.963), myoglobin (OR=1.005), and positive virus result (OR=8.531) were independent risk factors of sepsis mortality. Adjusting antibiotics according to mNGS results, there was no statistical difference in the prognosis of patients with sepsis. Conclusion mNGS has the advantages of rapid and high positive rate in the detection of pathogens in patients with severe sepsis. Patients with high APACHE II score, immune-related diseases, and hypertension are more likely to obtain positive mNGS results. The effect of adjusting antibiotics according to mNGS results on the prognosis of sepsis needs to be further evaluated.
Collapse
Affiliation(s)
- Limin Sun
- General Intensive Care Unit, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuguang Zhang
- General Intensive Care Unit, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyue Yang
- General Intensive Care Unit, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Yang
- General Intensive Care Unit, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhua Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongqiang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoguang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- General Intensive Care Unit, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Tongwen Sun,
| |
Collapse
|
23
|
Lyu J, Deng Q, Li R, Tian B, Zhao Y, Hu X, Zhou M, Gu B. Pneumonia Caused by Coinfection with Cytomegalovirus and Pneumocystis jirovecii in an HIV-Negative Infant Diagnosed by Metagenomic Next-Generation Sequencing. Infect Drug Resist 2022; 15:3417-3425. [PMID: 35800120 PMCID: PMC9253620 DOI: 10.2147/idr.s364241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pneumonia produced by coinfection with Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) in infants and young children without timely diagnosis and treatment is often fatal due to the limitations of traditional tests. More accurate and rapid diagnostic methods for multiple infections are urgently needed. Case Presentation Here, we report a case of a 2-month-old boy with pneumonia caused by Pneumocystis jirovecii (PJ) and cytomegalovirus (CMV) without HIV infection. Chest computed tomography (CT) showed massive exudative consolidation in both lungs. Microscopic examination of stained sputum and smear specimens and bacterial and fungal culture tests were all negative, and CMV nucleic acid and antibody tests were positive. After a period of antiviral and anti-infective therapy, pulmonary inflammation was not relieved. Subsequently, sputum and venous blood samples were analysed by metagenomic next-generation sequencing (mNGS), and the sequences of PJ and CMV were acquired. The patient was finally diagnosed with pneumonia caused by PJ and CMV coinfection. Anti-fungal combined with anti-viral therapy was given immediately. mNGS re-examination of bronchoalveolar lavage fluid (BALF) also revealed the same primary pathogen. Therapy was stopped due to the request of the patient’s guardian. Hence, the child was discharged from the hospital and eventually died. Conclusion This case emphasizes the combined use of mNGS and traditional tests in the clinical diagnosis of mixed lung infections in infants without HIV infection. mNGS is a new adjunctive diagnostic method that can rapidly discriminate multiple causes of pneumonia.
Collapse
Affiliation(s)
- Jingwen Lyu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Rongqing Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Benshun Tian
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Xuejiao Hu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Maohua Zhou
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| |
Collapse
|
24
|
Yin K, Liu L, Fan G. Classification and Drug Resistance Analysis of Pathogenic Bacteria in Patients with Bacterial Pneumonia in Emergency Intensive Care Unit. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6980091. [PMID: 36262997 PMCID: PMC9546695 DOI: 10.1155/2022/6980091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to compare the identification efficiency of metagenome next generation sequencing (mNGS) and traditional methods in detecting pathogens in patients with severe bacterial pneumonia (BP) and further analyze the drug resistance of common pathogens. METHODS A total of 180 patients with severe BP who were admitted to our hospital from June 2017 to July 2020 were selected as the research objects. Alveolar lavage fluid from the patients were collected, and pathogens were detected by the mNGS technology and traditional etiological detection technology. Common pathogens detected by mNGS were tested for the drug sensitivity test. The difference between mNGS and traditional detection method in the identification of pathogenic bacteria in severe BP patients was compared, and the distribution characteristics and drug resistance of pathogenic bacteria were analyzed. RESULTS The positive rate of mNGS detection was 92.22%, which was significantly higher than that of the traditional culture method (58.33%, P < 0.05). 347 strains of pathogenic bacteria were detected by mNGS, including 256 strains of Gram-negative bacteria (G-), 89 strains of Gram-positive bacteria (G+), and 2 strains of fungi. Among G- bacteria, Acinetobacter baumannii had higher resistance to piperacillin/tazobactam, ceftazidime, imipenem, levofloxacin, amikacin, ciprofloxacin, gentamicin, and the lowest resistance to tigecycline. The resistance of Klebsiella pneumoniae to piperacillin/tazobactam and ceftazidime was higher. Pseudomonas aeruginosa had low resistance to all the drugs. Escherichia coli had high drug resistance to most drugs, and the drug resistant rates to cefoperazone/sulbactam, piperacillin/tazobactam, ceftazidime, imipenem, and gentamicin were all more than 50.00%. G+ bacteria had high resistance to penicillin, azithromycin, amoxicillin and levofloxacin, and amoxicillin and levofloxacin had high resistance, up to 100.00%. CONCLUSION mNGS has high sensitivity for the identification of pathogenic bacteria in patients with BP. G- bacteria were the main pathogens of BP, but both G- and G+ bacteria had high resistance to a variety of antibacterial drugs.
Collapse
Affiliation(s)
- Kai Yin
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ling Liu
- Department of Pneumology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guofeng Fan
- Department of Emergency, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
25
|
Zhu M, Liu S, Zhao C, Shi J, Li C, Ling S, Cheng J, Dong W, Xu J. Alterations in the gut microbiota of AIDS patients with pneumocystis pneumonia and correlations with the lung microbiota. Front Cell Infect Microbiol 2022; 12:1033427. [PMID: 36339339 PMCID: PMC9634167 DOI: 10.3389/fcimb.2022.1033427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Due to the inability to be cultured in vitro, the biological characteristics and pathogenicity of Pneumocystis jirovecii remain unclear. Intestinal microflora disorder is related to the occurrence and development of various pulmonary diseases. This work explores the pathogenesis of pneumocystis pneumonia (PCP) in acquired immune deficiency syndrome (AIDS) patients from a microbiome perspective, to provide better strategies for the diagnosis, treatment, and prevention of PCP. METHODS Subjects were divided into three groups: human immunodeficiency virus (HIV)-infected patients combined with PCP, HIV-infected patients without PCP, and HIV-negative. Stool and bronchoalveolar lavage fluid (BALF) samples were collected, total DNA was extracted, and 16S rRNA high-throughput sequencing was performed using an Illumina MiSeq platform. PICRUSt and BugBase were used to predict microflora functions, and correlation analysis of intestinal and lung bacterial flora was conducted. RESULTS Compared with the HIV- group, prevotella and another 21 genera in the intestinal microbiome were statistically different in the HIV+ group; 25 genera including Escherichia-Shigella from HIV+PCP+ group were statistically different from HIV+PCP- group. The abundance of Genera such as Porphyromonas was positively or negatively correlated with CD16/CD56+ (μL). Compared with the HIV- group, identification efficiency based on area under the curve (AUC) >0.7 for the HIV+ group identified seven genera in the gut microbiota, including Enterococcus (total AUC = 0.9519). Compared with the HIV+PCP- group, there were no bacteria with AUC >0.7 in the lung or intestine of the HIV+PCP+ group. The number of shared bacteria between BALF and fecal samples was eight species in the HIV- group, 109 species in PCP- patients, and 228 species in PCP+ patients, according to Venn diagram analysis. Changes in various clinical indicators and blood parameters were also closely related to the increase or decrease in the abundance of intestinal and pulmonary bacteria, respectively. CONCLUSIONS HIV infection and PCP significantly altered the species composition of lung and intestinal microbiomes, HIV infection also significantly affected intestinal microbiome gene functions, and PCP exacerbated the changes. The classification model can be used to distinguish HIV+ from HIV- patients, but the efficiency of bacterial classification was poor between PCP+ and PCP- groups. The microbiomes in the lung and gut were correlated to some extent, providing evidence for the existence of a lung-gut axis, revealing a potential therapeutic target in patients with HIV and PCP.
Collapse
Affiliation(s)
- Mingli Zhu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sai Liu
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenfei Zhao
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinchuan Shi
- Department of Infectious Diseases, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaodan Li
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shisheng Ling
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
| | - Jianghao Cheng
- Department of Microbiology, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenkun Dong
- Research and Development Department, Assure Tech Institute of Medical Device, Hangzhou, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenkun Dong, ; Jiru Xu,
| |
Collapse
|