1
|
Ungri AM, Dos Santos Sabatke BF, Rossi IV, das Neves GB, Marques J, Ribeiro BG, Borges GK, Moreira RS, Ramírez MI, Miletti LC. Extracellular vesicles released by Trypanosoma evansi: induction analysis and proteomics. Parasitol Res 2024; 123:314. [PMID: 39225716 DOI: 10.1007/s00436-024-08330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Trypanosoma evansi is a unicellular protozoan responsible for causing a disease known as "surra," which is found in different regions of the world and primarily affects horses and camels. Few information is known about virulence factors released from the parasite within the animals. The organism can secrete extracellular vesicles (EVs), which transport a variety of molecules, including proteins. Before being considered exclusively as a means for eliminating unwanted substances, extracellular vesicles (EVs) have emerged as key players in intercellular communication, facilitating interactions between cells, host cells, and parasites, and even between parasites themselves. Thus, they may be used as potential biomarkers. This study aimed to assess the induction of EVs production by Ca+2, conduct a proteomic analysis of the EVs released by T. evansi, and identify epitopes that could serve as biomarkers. The findings indicated that Ca+2 is not an effective promoter of vesiculation in T. evansi. Furthermore, the proteomic analysis has identified multiple proteins that have been investigated as biomarkers or vaccine antigens, previously. A total of 442 proteins were identified, with 7 of them specifically recognizing 9 epitopes that are unique to T. evansi. At least one of these epitopes of TevSTIB805.9.11580 have been previously identified, which increases the possibility of further investigating its potential as a biomarker.
Collapse
Affiliation(s)
- Amanda Martins Ungri
- Laboratório de Hemoparasitas E Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade Do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Conta Dinheiro, Lages, 88520-000, SC, Brazil
| | - Bruna Fernanda Dos Santos Sabatke
- Laboratório de Biologia Celular, EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Instituto Carlos Chagas-Fiocruz, Curitiba, 81310-020, Brazil
| | - Izadora Volpato Rossi
- Laboratório de Biologia Celular, EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Instituto Carlos Chagas-Fiocruz, Curitiba, 81310-020, Brazil
| | - Gabriella Bassi das Neves
- Laboratório de Hemoparasitas E Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade Do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Conta Dinheiro, Lages, 88520-000, SC, Brazil
| | - Júlia Marques
- Laboratório de Hemoparasitas E Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade Do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Conta Dinheiro, Lages, 88520-000, SC, Brazil
| | - Brenda Guedes Ribeiro
- Laboratório de Hemoparasitas E Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade Do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Conta Dinheiro, Lages, 88520-000, SC, Brazil
| | - Gabriela Kaiser Borges
- Laboratório de Hemoparasitas E Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade Do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Conta Dinheiro, Lages, 88520-000, SC, Brazil
| | - Renato Simões Moreira
- Instituto Federal de Santa Catarina (IFSC), Campus Gaspar, R. Adriano Kormann, 510-Bela Vista, Gaspar, SC, Brazil
| | - Marcel Ivan Ramírez
- Laboratório de Biologia Celular, EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Instituto Carlos Chagas-Fiocruz, Curitiba, 81310-020, Brazil
| | - Luiz Claudio Miletti
- Laboratório de Hemoparasitas E Vetores, Centro de Ciências Agroveterinárias (CAV), Universidade Do Estado de Santa Catarina (UDESC), Av. Luiz de Camões, 2090, Conta Dinheiro, Lages, 88520-000, SC, Brazil.
- Departamento de Produção Animal E Alimentos, Centro de Ciências Agroveterinárias, Universidade Do Estado de Santa Catarina, Av. Luiz de Camões, 2090 Bairro Conta Dinheiro, Lages, SC, 88520-000, Brazil.
| |
Collapse
|
2
|
Rahmatian N, Abbasi S, Abbasi N, Tavakkoli Yaraki M. Green-synthesized chitosan‑carbon dot nanocomposite as turn-on aptasensor for detection and quantification of Leishmania infantum parasite. Int J Biol Macromol 2024; 270:132483. [PMID: 38763252 DOI: 10.1016/j.ijbiomac.2024.132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Leishmania is one of the most common diseases between human and animals, caused by Leishmania infantum parasite. Here, we have developed an ultra-selective turn-on fluorescent probe based on an aptamer and Chitosan-CD nanocomposite. The CD used in this study were synthesized using Quercus cap extract and a microwave-assisted approach. The Chitosan-CD nanocomposite was optimized using several microscopic and spectroscopic techniques to possess a bright fluorescence emission before adding aptamer and totally quenched fluorescence after addition of aptamer. The designed probe was proficient in the detection and quantification Leishmania infantum parasite by selective targeting of poly(A) binding protein (PABP) on the surface of the parasite. The designed fluorescent biosensor with high sensitivity, excellent selectivity, and a limit of detection (LOD) of 94 cells/mL of the Leishmania infantum parasite as well as a linear response in the ranges of 188-750 cells/mL and 3000-6000 cells/mL (R2 ≥ 0.98 for both linear ranges). Additionally, the selectivity of the designed probe was evaluated in the presence of different pathogenic species such as Trypanosoma brucei parasite and Staphylococcus aureus bacteria, as well as LiIF2α and LiP2a and BSA proteins as interference substances. The results of this study shows that using Chitosan-CD nanocomposite is a great strategy for developing selective turn-on probes with extraordinary accuracy and sensitivity in identifying Leishmania infantum parasite, especially in the early stages of the disease, and it is promising for the future clinical applications.
Collapse
Affiliation(s)
| | | | - Naser Abbasi
- Department of Pharmacology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
3
|
Tullume-Vergara PO, Caicedo KYO, Tantalean JFC, Serrano MG, Buck GA, Teixeira MMG, Shaw JJ, Alves JMP. Genomes of Endotrypanum monterogeii from Panama and Zelonia costaricensis from Brazil: Expansion of Multigene Families in Leishmaniinae Parasites That Are Close Relatives of Leishmania spp. Pathogens 2023; 12:1409. [PMID: 38133293 PMCID: PMC10747355 DOI: 10.3390/pathogens12121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The Leishmaniinae subfamily of the Trypanosomatidae contains both genus Zelonia (monoxenous) and Endotrypanum (dixenous). They are amongst the nearest known relatives of Leishmania, which comprises many human pathogens widespread in the developing world. These closely related lineages are models for the genomic biology of monoxenous and dixenous parasites. Herein, we used comparative genomics to identify the orthologous groups (OGs) shared among 26 Leishmaniinae species to investigate gene family expansion/contraction and applied two phylogenomic approaches to confirm relationships within the subfamily. The Endotrypanum monterogeii and Zelonia costaricensis genomes were assembled, with sizes of 29.9 Mb and 38.0 Mb and 9.711 and 12.201 predicted protein-coding genes, respectively. The genome of E. monterogeii displayed a higher number of multicopy cell surface protein families, including glycoprotein 63 and glycoprotein 46, compared to Leishmania spp. The genome of Z. costaricensis presents expansions of BT1 and amino acid transporters and proteins containing leucine-rich repeat domains, as well as a loss of ABC-type transporters. In total, 415 and 85 lineage-specific OGs were identified in Z. costaricensis and E. monterogeii. The evolutionary relationships within the subfamily were confirmed using the supermatrix (3384 protein-coding genes) and supertree methods. Overall, this study showed new expansions of multigene families in monoxenous and dixenous parasites of the subfamily Leishmaniinae.
Collapse
Affiliation(s)
- Percy O. Tullume-Vergara
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Kelly Y. O. Caicedo
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jose F. C. Tantalean
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jeffrey J. Shaw
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Joao M. P. Alves
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| |
Collapse
|
4
|
Telleria EL, Tinoco-Nunes B, Forrest DM, Di-Blasi T, Leštinová T, Chang KP, Volf P, Pitaluga AN, Traub-Csekö YM. Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania. Front Immunol 2023; 14:1162596. [PMID: 38022562 PMCID: PMC10652419 DOI: 10.3389/fimmu.2023.1162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Bruno Tinoco-Nunes
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David M. Forrest
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Kwang Poo Chang
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - André Nóbrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Gallardo M, Arancibia R, Jiménez C, Wilkinson S, Toro PM, Roussel P, Henry N. Ferrocene-based nitroheterocyclic sulfonylhydrazones: design, synthesis, characterization and trypanocidal properties. J Biol Inorg Chem 2023; 28:549-558. [PMID: 37462740 DOI: 10.1007/s00775-023-02010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023]
Abstract
A series of new ferrocenyl nitroheterocyclic sulfonylhydrazones (1a-4a and 1b-2b) were prepared by the reaction between formyl (R = H) or acetyl (R = CH3) nitroheterocyclic precursors [4/5-NO2(C5H2XCOR), where X = O, S)] and ferrocenyl tosyl hydrazine [(η5-C5H5)Fe(η5-C5H4SO2-NH-NH2)]. All compounds were characterized by conventional spectroscopic techniques. In the solid state, the molecular structures of compounds 1a, 2b, and 3a were determined by single-crystal X-ray diffraction. The compounds showed an E-configuration around the C=N moiety. Evaluation of trypanocidal activity, measured in vitro against the Trypanosoma cruzi and Trypanosoma brucei strains, indicated that all organometallic tosyl hydrazones displayed activity against both parasite species with a higher level of potency toward T. brucei than T. cruzi. Moreover, the biological evaluation showed that the 5-nitroheterocyclic derivatives were more efficient trypanocidal agents than their 4-nitroheterocyclic counterparts.
Collapse
Affiliation(s)
- Miguel Gallardo
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arancibia
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Claudio Jiménez
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Shane Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Patricia M Toro
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca, Chile
| | - Pascal Roussel
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| | - Natacha Henry
- Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, Univ. Artois,, Lille, France
| |
Collapse
|
6
|
Oliveira SSC, Correia CA, Santos VS, da Cunha EFF, de Castro AA, Ramalho TC, Devereux M, McCann M, Branquinha MH, Santos ALS. Silver(I) and Copper(II) 1,10-Phenanthroline-5,6-dione Complexes as Promising Antivirulence Strategy against Leishmania: Focus on Gp63 (Leishmanolysin). Trop Med Infect Dis 2023; 8:348. [PMID: 37505644 PMCID: PMC10384183 DOI: 10.3390/tropicalmed8070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Leishmaniasis, caused by protozoa of the genus Leishmania, encompasses a group of neglected diseases with diverse clinical and epidemiological manifestations that can be fatal if not adequately and promptly managed/treated. The current chemotherapy options for this disease are expensive, require invasive administration and often lead to severe side effects. In this regard, our research group has previously reported the potent anti-Leishmania activity of two coordination compounds (complexes) derived from 1,10-phenanthroline-5,6-dione (phendione): [Cu(phendione)3].(ClO4)2.4H2O and [Ag(phendione)2].ClO4. The present study aimed to evaluate the effects of these complexes on leishmanolysin (gp63), a virulence factor produced by all Leishmania species that plays multiple functions and is recognized as a potential target for antiparasitic drugs. The results showed that both Ag-phendione (-74.82 kcal/mol) and Cu-phendione (-68.16 kcal/mol) were capable of interacting with the amino acids comprising the active site of the gp63 protein, exhibiting more favorable interaction energies compared to phendione alone (-39.75 kcal/mol) or 1,10-phenanthroline (-45.83 kcal/mol; a classical gp63 inhibitor) as judged by molecular docking assay. The analysis of kinetic parameters using the fluorogenic substrate Z-Phe-Arg-AMC indicated Vmax and apparent Km values of 0.064 µM/s and 14.18 µM, respectively, for the released gp63. The effects of both complexes on gp63 proteolytic activity were consistent with the in silico assay, where Ag-phendione exhibited the highest gp63 inhibition capacity against gp63, with an IC50 value of 2.16 µM and the lowest inhibitory constant value (Ki = 5.13 µM), followed by Cu-phendione (IC50 = 163 µM and Ki = 27.05 µM). Notably, pretreatment of live L. amazonensis promastigotes with the complexes resulted in a significant reduction in the expression of gp63 protein, including the isoforms located on the parasite cell surface. Both complexes markedly decreased the in vitro association indexes between L. amazonensis promastigotes and THP-1 human macrophages; however, this effect was reversed by the addition of soluble gp63 molecules to the interaction medium. Collectively, our findings highlight the potential use of these potent complexes in antivirulence therapy against Leishmania, offering new insights for the development of effective treatments for leishmaniasis.
Collapse
Affiliation(s)
- Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Claudyane A Correia
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Vanessa S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Elaine F F da Cunha
- Laboratório de Modelagem Molecular, Departamento de Química, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - Alexandre A de Castro
- Laboratório de Modelagem Molecular, Departamento de Química, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - Teodorico C Ramalho
- Laboratório de Modelagem Molecular, Departamento de Química, Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | - Michael Devereux
- The Centre for Biomimetic & Therapeutic Research, Focas Research Institute, Technological University Dublin, D08 CKP1 Dublin, Ireland
| | - Malachy McCann
- Chemistry Department, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
7
|
Role of Brazilian bats in the epidemiological cycle of potentially zoonotic pathogens. Microb Pathog 2023; 177:106032. [PMID: 36804526 DOI: 10.1016/j.micpath.2023.106032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Bats (Chiroptera) are flying mammals of great biodiversity and habits. These characteristics contribute for them being natural reservoirs and part of the epidemiological cycle of several potentially zoonotic pathogens, such as viruses, protozoa, fungi and bacteria. Brazil hosts approximately 15% of the world's bat diversity, with 181 distinct species, 68 genera and 9 families. About 60% of infectious diseases in humans are of zoonotic origin and, in the last decades, the detection of zoonotic pathogens in bats and their environment has been reported, such as Rabies virus (RABV) and Histoplasma capsulatum. Thus, the aim of this work was to review the reports of zoonotic pathogens associated with bats in Brazil in the past ten years. We reviewed the main pathogenic microorganisms described and the species of bats most frequently involved in the epidemiological cycles of these zoonotic agents. The obtained data show an upward trend in the detection of zoonotic pathogens in Brazilian bats, such as RABV, Bartonella sp., Histoplasma capsulatum and Leishmania spp., with emphasis on the bat species Artibeus lituratus, Carollia perspicillata, Desmodus rotundus and Molossus molossus. These findings highlight the importance of monitoring bat-associated microrganisms to early identify pathogens that may threaten bat populations, including potentially zoonotic microrganisms, emphasizing the importance of the One Health approach to prevent and mitigate the risks of the emergence of zoonotic diseases.
Collapse
|
8
|
Oliveira C, Holetz FB, Alves LR, Ávila AR. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens 2022; 12:pathogens12010032. [PMID: 36678380 PMCID: PMC9865030 DOI: 10.3390/pathogens12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.
Collapse
Affiliation(s)
- Camila Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Centre de Recherche CERVO, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Fabíola Barbieri Holetz
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center, University Laval, Québec City, QC G1V 4G2, Canada
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Correspondence: ; Tel.: +55-41-33163230
| |
Collapse
|
9
|
Castillo-Castañeda AC, Patiño LH, Zuñiga MF, Cantillo-Barraza O, Ayala MS, Segura M, Bautista J, Urbano P, Jaimes-Dueñez J, Ramírez JD. An overview of the trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites infecting several mammal species in Colombia. Parasit Vectors 2022; 15:471. [PMID: 36522757 PMCID: PMC9756507 DOI: 10.1186/s13071-022-05595-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Trypanosomatids are among the most critical parasites for public health due to their impact on human, animal, and plant health. Diseases associated with these pathogens manifest mainly in poor and vulnerable populations, where social, environmental, and biological factors modulate the case incidence and geographical distribution. METHODS We used Sanger and amplicon-based next-generation sequencing (NGS) in samples from different mammals to identify trypanosomatid infections in several departments in Colombia. A total of 174 DNA samples (18 humans, 83 dogs, and 73 wild mammals) were analyzed by conventional PCR using a fragment of the heat shock protein 70 (Hsp70) gene and Sanger sequenced the positive samples. Twenty-seven samples were sent for amplicon-based NGS using the same gene fragment. Data obtained were used to perform diversity analyses. RESULTS One hundred and thirteen samples were positive for PCR by Hsp70 fragment; these corresponded to 22.1% Leishmania spp., 18.6% L. amazonensis, 9.7% L. braziliensis, 14.2% L. infantum, 8% L. panamensis, and 27.4% Trypanosoma cruzi. Comparison of the identified species by the two sequencing technologies used resulted in 97% concordance. Alpha and beta diversity indices were significant, mainly for dogs; there was an interesting index of coinfection events in the analyzed samples: different Leishmania species and the simultaneous presence of T. cruzi and even T. rangeli in one of the samples analyzed. Moreover, a low presence of L. braziliensis was observed in samples from wild mammals. Interestingly, to our knowledge, this is the first report of Leishmania detection in Hydrochaeris hydrochaeris (capybara) in Colombia. CONCLUSIONS The Hsp70 fragment used in this study is an optimal molecular marker for trypanosomatid identification in many hosts and allows the identification of different species in the same sample when amplicon-based sequencing is used. However, the use of this fragment for molecular diagnosis through conventional PCR should be carefully interpreted because of this same capacity to identify several parasites. This point is of pivotal importance in highly endemic countries across South America because of the co-circulation of different genera from the Trypanosomatidae family. The findings show an interesting starting point for One Health approaches in which coevolution and vector-host interactions can be studied.
Collapse
Affiliation(s)
- Adriana C. Castillo-Castañeda
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H. Patiño
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Maria Fernanda Zuñiga
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.412881.60000 0000 8882 5269Grupo de Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Colombia
| | - Martha S. Ayala
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Maryi Segura
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Jessica Bautista
- grid.419226.a0000 0004 0614 5067Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de La Orinoquía, Universidad Internacional del Trópico Americano (Unitropico), Yopal, Colombia
| | - Jeiczon Jaimes-Dueñez
- grid.442158.e0000 0001 2300 1573Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Juan David Ramírez
- grid.412191.e0000 0001 2205 5940Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia ,grid.59734.3c0000 0001 0670 2351Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
10
|
San Francisco J, Astudillo C, Vega JL, Catalán A, Gutiérrez B, Araya JE, Zailberger A, Marina A, García C, Sanchez N, Osuna A, Vilchez S, Ramírez MI, Macedo J, Feijoli VS, Palmisano G, González J. Trypanosoma cruzi pathogenicity involves virulence factor expression and upregulation of bioenergetic and biosynthetic pathways. Virulence 2022; 13:1827-1848. [PMID: 36284085 PMCID: PMC9601562 DOI: 10.1080/21505594.2022.2132776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The molecular repertoire of Trypanosoma cruzi effects its virulence and impacts the clinical course of the resulting Chagas disease. This study aimed to determine the mechanism underlying the pathogenicity of T. cruzi. Two T. cruzi cell lines (C8C3hvir and C8C3lvir), obtained from the clone H510 C8C3 and exhibiting different virulence phenotypes, were used to evaluate the parasite's infectivity in mice. The organ parasite load was analysed by qPCR. The proteomes of both T. cruzi cell lines were compared using nLC-MS/MS. Cruzipain (Czp), complement regulatory protein (CRP), trans-sialidase (TS), Tc-85, and sialylated epitope expression levels were evaluated by immunoblotting. High-virulence C8C3hvir was highly infectious in mice and demonstrated three to five times higher infectivity in mouse myocardial cells than low-virulence C8C3lvir. qPCR revealed higher parasite loads in organs of acute as well as chronically C8C3hvir-infected mice than in those of C8C3lvir-infected mice. Comparative quantitative proteomics revealed that 390 of 1547 identified proteins were differentially regulated in C8C3hvir with respect to C8C3lvir. Amongst these, 174 proteins were upregulated in C8C3hvir and 216 were downregulated in C8C3lvir. The upregulated proteins in C8C3hvir were associated with the tricarboxylic acid cycle, ribosomal proteins, and redoxins. Higher levels of Czp, CRP, TS, Tc-85, and sialylated epitopes were expressed in C8C3hvir than in C8C3lvir. Thus, T. cruzi virulence may be related to virulence factor expression as well as upregulation of bioenergetic and biosynthetic pathways proteins.
Collapse
Affiliation(s)
- Juan San Francisco
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Constanza Astudillo
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - José Luis Vega
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile,Laboratory of Gap Junction Proteins and Parasitic Disease, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile,Research Center in Immunology and Biomedical Biotechnology of Antofagasta, Antofagasta, Chile
| | - Alejandro Catalán
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Bessy Gutiérrez
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Jorge E Araya
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | | | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos García
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Nuria Sanchez
- Centro de Biología Molecular Severo Ochoa Universidad Autonoma de Madrid, Madrid, Spain
| | - Antonio Osuna
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Susana Vilchez
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Marcel I Ramírez
- Laboratório de Biologia Molecular e Sistemática de Trypanosomatides, Instituto Carlos Chagas, Fiocruz, Parana, Brazil
| | - Janaina Macedo
- Department of Parasitology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Jorge González
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile,Research Center in Immunology and Biomedical Biotechnology of Antofagasta, Antofagasta, Chile,Laboratório de Biologia Molecular e Sistemática de Trypanosomatides, Millennium Institute on Immunology and Immunotherapy, Antofagasta, Chile,CONTACT Jorge González
| |
Collapse
|
11
|
Sandes JM, de Figueiredo RCBQ. The endoplasmic reticulum of trypanosomatids: An unrevealed road for chemotherapy. Front Cell Infect Microbiol 2022; 12:1057774. [PMID: 36439218 PMCID: PMC9684732 DOI: 10.3389/fcimb.2022.1057774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 01/04/2024] Open
Abstract
The endoplasmic reticulum (ER) of higher eukaryotic cells forms an intricate membranous network that serves as the main processing facility for folding and assembling of secreted and membrane proteins. The ER is a highly dynamic organelle that interacts with other intracellular structures, as well as endosymbiotic pathogenic and non-pathogenic microorganisms. A strict ER quality control (ERQC) must work to ensure that proteins entering the ER are folded and processed correctly. Unfolded or misfolded proteins are usually identified, selected, and addressed to Endoplasmic Reticulum-Associated Degradation (ERAD) complex. Conversely, when there is a large demand for secreted proteins or ER imbalance, the accumulation of unfolded or misfolded proteins activates the Unfold Protein Response (UPR) to restore the ER homeostasis or, in the case of persistent ER stress, induces the cell death. Pathogenic trypanosomatids, such as Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp are the etiological agents of important neglected diseases. These protozoans have a complex life cycle alternating between vertebrate and invertebrate hosts. The ER of trypanosomatids, like those found in higher eukaryotes, is also specialized for secretion, and depends on the ERAD and non-canonical UPR to deal with the ER stress. Here, we reviewed the basic aspects of ER biology, organization, and quality control in trypanosomatids. We also focused on the unusual way by which T. cruzi, T. brucei, and Leishmania spp. respond to ER stress, emphasizing how these parasites' ER-unrevealed roads might be an attractive target for chemotherapy.
Collapse
Affiliation(s)
- Jana Messias Sandes
- Laboratório de Biologia Celular e Molecular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Keizo Assami, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
12
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The Defensive Interactions of Prominent Infectious Protozoan Parasites: The Host's Complement System. Biomolecules 2022; 12:1564. [PMID: 36358913 PMCID: PMC9687244 DOI: 10.3390/biom12111564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2023] Open
Abstract
The complement system exerts crucial functions both in innate immune responses and adaptive humoral immunity. This pivotal system plays a major role dealing with pathogen invasions including protozoan parasites. Different pathogens including parasites have developed sophisticated strategies to defend themselves against complement killing. Some of these strategies include the employment, mimicking or inhibition of host's complement regulatory proteins, leading to complement evasion. Therefore, parasites are proven to use the manipulation of the complement system to assist them during infection and persistence. Herein, we attempt to study the interaction´s mechanisms of some prominent infectious protozoan parasites including Plasmodium, Toxoplasma, Trypanosoma, and Leishmania dealing with the complement system. Moreover, several crucial proteins that are expressed, recruited or hijacked by parasites and are involved in the modulation of the host´s complement system are selected and their role for efficient complement killing or lysis evasion is discussed. In addition, parasite's complement regulatory proteins appear as plausible therapeutic and vaccine targets in protozoan parasitic infections. Accordingly, we also suggest some perspectives and insights useful in guiding future investigations.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein 38811, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein 38811, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
13
|
Oliveira MM, Bonturi CR, Salu BR, Oliva MLV, Mortara RA, Orikaza CM. Modulation of STAT-1, STAT-3, and STAT-6 activities in THP-1 derived macrophages infected with two Trypanosoma cruzi strains. Front Immunol 2022; 13:1038332. [PMID: 36389843 PMCID: PMC9643828 DOI: 10.3389/fimmu.2022.1038332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Trypanosoma cruzi is the causative protozoan of Chagas' Disease, a neglected tropical disease that affects 6-7 million people worldwide. Interaction of the parasite with the host immune system is a key factor in disease progression and chronic symptoms. Although the human immune system is capable of controlling the disease, the parasite has numerous evasion mechanisms that aim to maintain intracellular persistence and survival. Due to the pronounced genetic variability of T. cruzi, co-infections or mixed infections with more than one parasite strain have been reported in the literature. The intermodulation in such cases is unclear. This study aimed to evaluate the co-infection of T. cruzi strains G and CL compared to their individual infections in human macrophages derived from THP-1 cells activated by classical or alternative pathways. Flow cytometry analysis demonstrated that trypomastigotes were more infective than extracellular amastigotes (EAs) and that strain G could infect more macrophages than strain CL. Classically activated macrophages showed lower number of infected cells and IL-4-stimulated cells displayed increased CL-infected macrophages. However, co-infection was a rare event. CL EAs decreased the production of reactive oxygen species (ROS), whereas G trypomastigotes displayed increased ROS detection in classically activated cells. Co-infection did not affect ROS production. Monoinfection by strain G or CL mainly induced an anti-inflammatory cytokine profile by decreasing inflammatory cytokines (IFN-γ, TNF-α, IL-1β) and/or increasing IL-4, IL-10, and TGF-β. Co-infection led to a predominant inflammatory milieu, with reduced IL-10 and TGF-β, and/or promotion of IFN-γ and IL-1β release. Infection by strain G reduced activation of intracellular signal transducer and activator of transcription (STAT) factors. In EAs, monoinfections impaired STAT-1 activity and promoted phosphorylation of STAT-3, both changes may prolong cell survival. Coinfected macrophages displayed pronounced activation of all STATs examined. These activations likely promoted parasite persistence and survival of infected cells. The collective results demonstrate that although macrophages respond to both strains, T. cruzi can modulate the intracellular environment, inducing different responses depending on the strain, parasite infective form, and co-infection or monoinfection. The modulation influences parasite persistence and survival of infected cells.
Collapse
Affiliation(s)
- Melissa Martins Oliveira
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Camila Ramalho Bonturi
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Bruno Ramos Salu
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Maria Luiza Vilela Oliva
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Renato Arruda Mortara
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Cristina Mary Orikaza
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| |
Collapse
|
14
|
Romanelli M, Amaral M, Thevenard F, Santa Cruz LM, Regasini LO, Migotto AE, Lago JHG, Tempone AG. Mitochondrial Imbalance of Trypanosoma cruzi Induced by the Marine Alkaloid 6-Bromo-2'-de- N-Methylaplysinopsin. ACS OMEGA 2022; 7:28561-28570. [PMID: 35990437 PMCID: PMC9387129 DOI: 10.1021/acsomega.2c03395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/09/2023]
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects seven million people worldwide and lacks effective treatments. Using bioactivity-guided fractionation, NMR, and electrospray ionization-high resolution mass spectrometry (ESI-HRMS) spectral analysis, the indole alkaloid 6-bromo-2'-de-N-methylaplysinopsin (BMA) was isolated and chemically characterized from the marine coral Tubastraea tagusensis. BMA was tested against trypomastigotes and intracellular amastigotes of T. cruzi, resulting in IC50 values of 62 and 5.7 μM, respectively, with no mammalian cytotoxicity. The mechanism of action studies showed that BMA induced no alterations in the plasma membrane permeability but caused depolarization of the mitochondrial membrane potential, reducing ATP levels. Intracellular calcium levels were also reduced after the treatment, which was associated with pH alteration of acidocalcisomes. Using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)/MS analysis, alterations of mass spectral signals were observed after treatment with BMA, suggesting a different mechanism from benznidazole. In silico pharmacokinetic-pharmacodynamic (PKPD) parameters suggested a drug-likeness property, supporting the promising usefulness of this compound as a new hit for optimizations.
Collapse
Affiliation(s)
- Maiara
M. Romanelli
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Maiara Amaral
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| | - Fernanda Thevenard
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Lucas M. Santa Cruz
- Department
of Organic Contaminants, Instituto Adolfo
Lutz, Av Dr Arnaldo 355, São Paulo, SP 01246-000, Brazil
| | - Luis O. Regasini
- Department
of Chemistry and Environmental Sciences, Institute of Biosciences,
Humanities and Exact Sciences, Universidade
Estadual Paulista, R. Cristóvão Colombo 2265, São
Jose do Rio Preto, SP 15054-000, Brazil
| | - Alvaro E. Migotto
- Centre
for Marine Biology, Universidade de São
Paulo, Rodovia Manoel Hypólito do Rego, Km 131, São Sebastião, São Paulo, SP 11600-000, Brazil
| | - João Henrique G. Lago
- Centre
of Natural Sciences and Humanities, Federal
University of ABC (UFABC), Avenida dos Estados 5001, Santo Andre, SP 09210-580, Brazil
| | - Andre G. Tempone
- Centre
for Parasitology and Mycology, Adolfo Lutz
Institute, Av Dr Arnaldo 351, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
15
|
Venugopal G, Bird JT, Washam CL, Roys H, Bowlin A, Byrum SD, Weinkopff T. In vivo transcriptional analysis of mice infected with Leishmania major unveils cellular heterogeneity and altered transcriptomic profiling at single-cell resolution. PLoS Negl Trop Dis 2022; 16:e0010518. [PMID: 35789215 PMCID: PMC9286232 DOI: 10.1371/journal.pntd.0010518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/15/2022] [Accepted: 05/18/2022] [Indexed: 01/02/2023] Open
Abstract
Leishmania parasites cause cutaneous leishmaniasis (CL), a disease characterized by disfiguring, ulcerative skin lesions. Both parasite and host gene expression following infection with various Leishmania species has been investigated in vitro, but global transcriptional analysis following L. major infection in vivo is lacking. Thus, we conducted a comprehensive transcriptomic profiling study combining bulk RNA sequencing (RNA-Seq) and single-cell RNA sequencing (scRNA-Seq) to identify global changes in gene expression in vivo following L. major infection. Bulk RNA-Seq analysis revealed that host immune response pathways like the antigen processing and presentation pathway were significantly enriched amongst differentially expressed genes (DEGs) upon infection, while ribosomal pathways were significantly downregulated in infected mice compared to naive controls. scRNA-Seq analyses revealed cellular heterogeneity including distinct resident and recruited cell types in the skin following murine L. major infection. Within the individual immune cell types, several DEGs indicative of many interferon induced GTPases and antigen presentation molecules were significantly enhanced in the infected ears including macrophages, resident macrophages, and inflammatory monocytes. Ingenuity Pathway Analysis of scRNA-Seq data indicated the antigen presentation pathway was increased with infection, while EIF2 signaling is the top downregulated pathway followed by eIF4/p70S6k and mTOR signaling in multiple cell types including macrophages, blood and lymphatic endothelial cells. Altogether, this transcriptomic profile highlights known recruitment of myeloid cells to lesions and recognizes a potential role for EIF2 signaling in murine L. major infection in vivo.
Collapse
Affiliation(s)
- Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
- * E-mail: (SDB); (TW)
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (SDB); (TW)
| |
Collapse
|
16
|
de Castro Neto AL, da Silveira JF, Mortara RA. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity. Front Cell Infect Microbiol 2022; 12:807172. [PMID: 35573777 PMCID: PMC9097677 DOI: 10.3389/fcimb.2022.807172] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatids are flagellate protozoans that can infect several invertebrate and vertebrate hosts, including insects and humans. The three most studied species are the human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. which are the causative agents of Human African Trypanosomiasis (HAT), Chagas disease and different clinical forms of leishmaniasis, respectively. These parasites possess complex dixenous life cycles, with zoonotic and anthroponotic stages, and are transmitted by hematophagous insects. To colonize this myriad of hosts, they developed mechanisms, mediated by virulence factors, to infect, propagate and survive in different environments. In insects, surface proteins play roles in parasite attachment and survival in the insect gut, whilst in the mammalian host, the parasites have a whole group of proteins and mechanisms that aid them invading the host cells and evading its immune system components. Many studies have been done on the impact of these molecules in the vertebrate host, however it is also essential to notice the importance of these virulence factors in the insect vector during the parasite life cycle. When inside the insect, the parasites, like in humans, also need to survive defense mechanisms components that can inhibit parasite colonization or survival, e.g., midgut peritrophic membrane barrier, digestive enzymes, evasion of excretion alongside the digested blood meal, anatomic structures and physiological mechanisms of the anterior gut. This protection inside the insect is often implemented by the same group of virulence factors that perform roles of immune evasion in the mammalian host with just a few exceptions, in which a specific protein is expressed specifically for the insect vector form of the parasite. This review aims to discuss the roles of the virulence molecules in the insect vectors, showing the differences and similarities of modes of action of the same group of molecules in insect and humans, exclusive insect molecules and discuss possible genetic events that may have generated this protein diversity.
Collapse
|
17
|
Saenz-Garcia JL, Borges BS, Souza-Melo N, Machado LV, Miranda JS, Pacheco-Lugo LA, Moretti NS, Wheleer R, Soares Medeiros LC, DaRocha WD. Trypanin Disruption Affects the Motility and Infectivity of the Protozoan Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 11:807236. [PMID: 35071054 PMCID: PMC8777028 DOI: 10.3389/fcimb.2021.807236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
The flagellum of Trypanosomatids is an organelle that contributes to multiple functions, including motility, cell division, and host–pathogen interaction. Trypanin was first described in Trypanosoma brucei and is part of the dynein regulatory complex. TbTrypanin knockdown parasites showed motility defects in procyclic forms; however, silencing in bloodstream forms was lethal. Since TbTrypanin mutants show drastic phenotypic changes in mammalian stages, we decided to evaluate if the Trypanosoma cruzi ortholog plays a similar role by using the CRISPR-Cas9 system to generate null mutants. A ribonucleoprotein complex of SaCas9 and sgRNA plus donor oligonucleotide were used to edit both alleles of TcTrypanin without any selectable marker. TcTrypanin −/− epimastigotes showed a lower growth rate, partially detached flagella, normal numbers of nuclei and kinetoplasts, and motility defects such as reduced displacement and speed and increased tumbling propensity. The epimastigote mutant also showed decreased efficiency of in-vitro metacyclogenesis. Mutant parasites were able to complete the entire life cycle in vitro; however, they showed a reduction in their infection capacity compared with WT and addback cultures. Our data show that T. cruzi life cycle stages have differing sensitivities to TcTrypanin deletion. In conclusion, additional work is needed to dissect the motility components of T. cruzi and to identify essential molecules for mammalian stages.
Collapse
Affiliation(s)
- Jose L Saenz-Garcia
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Beatriz S Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Normanda Souza-Melo
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Laboratório de Ultraestrutura Hertha Mayer, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luiz V Machado
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | - Juliana S Miranda
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| | | | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richard Wheleer
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lia C Soares Medeiros
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Curitiba, Brazil
| |
Collapse
|
18
|
Dean DA, Haffner JJ, Katemauswa M, McCall LI. Chemical Cartography Approaches to Study Trypanosomatid Infection. J Vis Exp 2022:10.3791/63255. [PMID: 35129167 PMCID: PMC8875367 DOI: 10.3791/63255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Pathogen tropism and disease tropism refer to the tissue locations selectively colonized or damaged by pathogens, leading to localized disease symptoms. Human-infective trypanosomatid parasites include Trypanosoma cruzi, the causative agent of Chagas disease; Trypanosoma brucei, the causative agent of sleeping sickness; and Leishmania species, causative agents of leishmaniasis. Jointly, they affect 20 million people across the globe. These parasites show specific tropism: heart, esophagus, colon for T. cruzi, adipose tissue, pancreas, skin, circulatory system and central nervous system for T. brucei, skin for dermotropic Leishmania strains, and liver, spleen, and bone marrow for viscerotropic Leishmania strains. A spatial perspective is therefore essential to understand trypanosomatid disease pathogenesis. Chemical cartography generates 3D visualizations of small molecule abundance generated via liquid chromatography-mass spectrometry, in comparison to microbiological and immunological parameters. This protocol demonstrates how chemical cartography can be applied to study pathogenic processes during trypanosomatid infection, beginning from systematic tissue sampling and metabolite extraction, followed by liquid chromatography-tandem mass spectrometry data acquisition, and concluding with the generation of 3D maps of metabolite distribution. This method can be used for multiple research questions, such as nutrient requirements for tissue colonization by T. cruzi, T. brucei, or Leishmania, immunometabolism at sites of infection, and the relationship between local tissue metabolic perturbation and clinical disease symptoms, leading to comprehensive insight into trypanosomatid disease pathogenesis.
Collapse
Affiliation(s)
- Danya A Dean
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman
| | - Jacob J Haffner
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman; Department of Anthropology, University of Oklahoma, Norman
| | | | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman; Department of Microbiology and Plant Biology, University of Oklahoma, Norman;
| |
Collapse
|
19
|
Passos ADO, Assis LHC, Ferri YG, da Silva VL, da Silva MS, Cano MIN. The Trypanosomatids Cell Cycle: A Brief Report. Methods Mol Biol 2022; 2579:25-34. [PMID: 36045195 DOI: 10.1007/978-1-0716-2736-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trypanosomatids are protozoan parasites among which are the etiologic agents of various infectious diseases in humans, such as Trypanosoma cruzi (causative agent of Chagas disease), Trypanosoma brucei (causative agent of sleeping sickness), and species of the genus Leishmania (causative agents of leishmaniases). The cell cycle in these organisms presents a sequence of events conserved throughout evolution. However, these parasites also have unique characteristics that confer some peculiarities related to the cell cycle phases. This review compares general and peculiar aspects of the cell cycle in the replicative forms of trypanosomatids. Moreover, a brief discussion about the possible cross-talk between telomeres and the cell cycle is presented. Finally, we intend to open a discussion on how a profound understanding of the cell cycle would facilitate the search for potential targets for developing antiparasitic therapies that could help millions of people worldwide.
Collapse
Affiliation(s)
- Arthur de Oliveira Passos
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz H C Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Yete G Ferri
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Vitor L da Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcelo S da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Maria Isabel N Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
20
|
Knüsel S, Jenni A, Benninger M, Bütikofer P, Roditi I. Persistence of Trypanosoma brucei as early procyclic forms and social motility are dependent on glycosylphosphatidylinositol transamidase. Mol Microbiol 2021; 117:802-817. [PMID: 34954848 PMCID: PMC9303471 DOI: 10.1111/mmi.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022]
Abstract
Glycosylphosphatidylinositol (GPI)‐linked molecules are surface‐exposed membrane components that influence the infectivity, virulence and transmission of many eukaryotic pathogens. Procyclic (insect midgut) forms of Trypanosoma brucei do not require GPI‐anchored proteins for growth in suspension culture. Deletion of TbGPI8, and inactivation of the GPI:protein transamidase complex, is tolerated by cultured procyclic forms. Using a conditional knockout, we show TbGPI8 is required for social motility (SoMo). This collective migration by cultured early procyclic forms has been linked to colonization of the tsetse fly digestive tract. The SoMo‐negative phenotype was observed after a lag phase with respect to loss of TbGPI8 and correlated with an unexpectedly slow loss of procyclins, the major GPI‐anchored proteins. Procyclins are not essential for SoMo, however, suggesting a requirement for at least one other GPI‐anchored protein. Loss of TbGPI8 initiates the transition from early to late procyclic forms; this effect was observed in a subpopulation in suspension culture, and was more pronounced when cells were cultured on SoMo plates. Our results indicate two, potentially interlinked, scenarios that may explain the previously reported failure of TbGPI8 deletion mutants to establish a midgut infection in the tsetse fly: interference with stage‐specific gene expression and absence of SoMo.
Collapse
Affiliation(s)
- Sebastian Knüsel
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Aurelio Jenni
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.,Graduate School for Chemical and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Mattias Benninger
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
21
|
Medina-Rincón GJ, Gallo-Bernal S, Jiménez PA, Cruz-Saavedra L, Ramírez JD, Rodríguez MJ, Medina-Mur R, Díaz-Nassif G, Valderrama-Achury MD, Medina HM. Molecular and Clinical Aspects of Chronic Manifestations in Chagas Disease: A State-of-the-Art Review. Pathogens 2021; 10:pathogens10111493. [PMID: 34832648 PMCID: PMC8619182 DOI: 10.3390/pathogens10111493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic manifestations of Chagas disease present as disabling and life-threatening conditions affecting mainly the cardiovascular and gastrointestinal systems. Although meaningful research has outlined the different molecular mechanisms underlying Trypanosoma cruzi’s infection and the host-parasite interactions that follow, prompt diagnosis and treatment remain a challenge, particularly in developing countries and also in those where the disease is considered non-endemic. This review intends to present an up-to-date review of the parasite’s life cycle, genetic diversity, virulence factors, and infective mechanisms, as well as the epidemiology, clinical presentation, diagnosis, and treatment options of the main chronic complications of Chagas disease.
Collapse
Affiliation(s)
- Germán J. Medina-Rincón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Correspondence: ; Tel.: +57-310-817-2369
| | - Sebastián Gallo-Bernal
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Paula A. Jiménez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia; (P.A.J.); (L.C.-S.); (J.D.R.)
| | - María Juliana Rodríguez
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Ramón Medina-Mur
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| | - Gustavo Díaz-Nassif
- Division of Gastroenterology and Liver Diseases, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 111221, Colombia;
| | | | - Héctor M. Medina
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (S.G.-B.); (M.D.V.-A.); (H.M.M.)
- Division of Cardiology, Fundación Cardioinfantil-Instituto de Cardiología, Bogotá 110131, Colombia; (M.J.R.); (R.M.-M.)
| |
Collapse
|