1
|
Zheng Y, Li J, Gao J, Jin W, Hu J, Sun Y, Zhu H, Xu G. Apoptosis, MAPK signaling pathway affected in tilapia liver following nano-microplastics and sulfamethoxazole acute co-exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101370. [PMID: 39616671 DOI: 10.1016/j.cbd.2024.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Studies showed that toxicants that adhered to the surface of nano-microplastics (NPs) have toxicological effects. Juvenile tilapia were divided into four groups namely the control group (A), 100 ng·L-1 sulfamethoxazole (SMZ) group (B), 75 nm NPs group (C) and SMZ + 75 nm NPs group (D), and were exposed to an acute test for 2, 4 and 8 days. The hepatic histopathological changes, enzymatic activities, transcriptomics and proteomics analysis have been performed. The results showed that; the enzymatic activities of anti-oxidative enzymes (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory factors (TNFα, IL-1β) and apoptosis (Caspase 3) have decreased significantly at 8 d. Hepatic histopathological results revealed the narrowed hepatic sinuses, displaced nucleus, and vacuoles under SMZ exposure. Transcriptome results demonstrated that endocytosis, MAPK signaling pathway, apoptosis, lysosome and herpes simplex infection were enriched in group C at 8 d. apaf1, casp3a, nfkbiaa (apoptosis, except for 8 d) were significantly increased, il1b and tgfb3, fgfr2 showed significant increase and decrease in group C/D. ctsd and ctsk associated with apoptosis have been especially significantly increased at 8 d, while MAPK signaling pathway, gadd45ga, gadd45gb/gadd45gg have been significantly decreased and increased, as well as map3k3/map3k2 significantly decreased at 8 d. Apoptosis and MAPK signaling pathway were affected and the synergistic effect was verified in tilapia liver following NPs and SMZ acute co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China; College of Fisheries, Tianjin Agricultural University, Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiancao Gao
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Wei Jin
- College of Fisheries, Tianjin Agricultural University, Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China; College of Fisheries, Tianjin Agricultural University, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
2
|
Zhao P, Zhang W, Zhou X, Zhao Y, Li A, Sun Y. Gypenoside XLIX alleviates sepsis-associated encephalopathy by targeting PPAR-α. Exp Neurol 2024; 383:115027. [PMID: 39490624 DOI: 10.1016/j.expneurol.2024.115027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-related systemic inflammation is a deadly condition with high rates of morbidity and mortality. There is evidence that sepsis affects the brain, and the most frequent organ dysfunction linked to sepsis is sepsis-associated encephalopathy. Sepsis-related brain damage can drastically reduce a patient's chances of survival. However, a specific treatment for sepsis-associated encephalopathy is not currently available. Consequently, to treat the brain damage caused by sepsis, investigating novel therapeutic strategies is imperative. After establishing the CLP-induced mouse SAE model, we treated the mice with Gyp-XLIX and evaluated apoptosis, neuroinflammation, brain damage, and oxidative stress in the brain tissue of each group of mice. Furthermore, the protective effects of Gyp-XLIX on LPS-treated BV-2 cells were assessed. We discovered that Gyp-XLIX treatment increased the survival rate of CLP-treated mice, alleviated SAE-related cerebral nerve abnormalities, and decreased blood-brain barrier breakdown, all of which could better preserve brain tissue in vivo. Furthermore, we identified associated proteins and found that Gyp-XLIX may reduce oxidative stress, cell apoptosis, and inflammation in the brain tissues of SAE mice. This observation was further validated in vitro. We established that Gyp-XLIX alleviates SAE by targeting PPAR-α. These findings may be important for the clinical applicability of Gyp-XLIX in SAE treatment. We found that Gyp-XLIX can alleviate brain injury in SAE by targeting PPAR-α and is a potential protective agent for SAE.
Collapse
Affiliation(s)
- Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Wei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Yikun Zhao
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Aimin Li
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang, Lianyungang 222000, China.
| |
Collapse
|
3
|
Song H, Zhao H, Wang W, Li S. Integration analysis of miRNA-mRNA uncovers the molecular immune mechanism of macrophage response to Aeromonas veronii infection. Microb Pathog 2024; 194:106820. [PMID: 39047803 DOI: 10.1016/j.micpath.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Macrophages are innate immunity cells which play pivotal roles in infectious immunity. Aeromonas veronii is a zoonotic agent capable of causing sepsis and poses a serious threat to public health. However, few studies have focused on miRNA-mRNA integration analysis to address the immune mechanisms of macrophage response to A. veronii infection. Herein, we characterized the immunophysiological, biochemical, and transcriptome changes of macrophage under A. veronii infection. We found that macrophages infected with A. veronii released large amounts of cytokines and triggered NLRP3-dependent pyroptosis. Subsequently, 603 differentially expressed miRNAs (DEMIs) and 3693 differentially expressed mRNAs (DEMs) were identified by RNA-seq analysis under A. veronii infection. Moreover, integrated analysis of miRNA-mRNA yielded 66 miRNA-target gene pairs composed of 41 DEMIs and 27 DEMs. We next identified the Toll-like receptor, NOD-like receptor, TNF and NF-κB pathways as necessary for macrophage to respond to A. veronii infection. miR-847 and miR-627 were involved in macrophage response to A. veronii infection by negatively regulating Pannexin-1 and thioredoxin interacting protein (TXNIP). Our findings elucidate the molecular mechanism of macrophage response to A. veronii infection at the miRNA level, providing many candidate miRNAs and mRNAs therapeutic targets for the prevention and treatment of A. veornii infectious diseases.
Collapse
Affiliation(s)
- Haichao Song
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China
| | - Han Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China
| | - Wenfeng Wang
- Ziguang Technology Park Co., Ltd, Weihai, Shandong Provience, 264206, PR China
| | - Shu Li
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China.
| |
Collapse
|
4
|
Hou F, Bian X, Jing D, Gao H, Zhu F. Hypoxia, hypoxia-inducible factors and inflammatory bowel diseases. Gastroenterol Rep (Oxf) 2024; 12:goae030. [PMID: 38638288 PMCID: PMC11023819 DOI: 10.1093/gastro/goae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Adequate oxygen supply is essential for maintaining the body's normal physiological function. In chronic inflammatory conditions such as inflammatory bowel disease (IBD), insufficient oxygen reaching the intestine triggers the regulatory system in response to environmental changes. However, the pathogenesis of IBD is still under investigation. Recent research has highlighted the significant role of hypoxia in IBD, particularly the involvement of hypoxia-inducible factors (HIF) and their regulatory mechanisms, making them promising therapeutic targets for IBD. This review will delve into the role of hypoxia, HIF, and the associated hypoxia-inflammatory microenvironment in the context of IBD. Potential interventions for addressing these challenging gastrointestinal inflammatory diseases will also be discussed within this framework.
Collapse
Affiliation(s)
- Fei Hou
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xixi Bian
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P. R. China
- Clinical Medical College of Jining Medical University, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, P. R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P. R. China
| | - Huikuan Gao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, P. R. China
| |
Collapse
|
5
|
Mukherjee M, Chakraborty SB. Pathogenicity of Aeromonas sobria Infecting Hill Stream Loach Botia rostrata (Günther, 1868) from North-East India. PROCEEDINGS OF THE ZOOLOGICAL SOCIETY 2024; 77:35-46. [DOI: 10.1007/s12595-023-00506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/17/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2025]
|
6
|
Barot SV, Sangwan N, Nair KG, Schmit SL, Xiang S, Kamath S, Liska D, Khorana AA. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer. EBioMedicine 2024; 100:104980. [PMID: 38306898 PMCID: PMC10850116 DOI: 10.1016/j.ebiom.2024.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The unexplained rise of young-onset CRC (yoCRC, age <50 years) is of concern. Evidence suggests that microbial dysbiosis may be a contributing factor, but the tumor microbial profile of yoCRC in comparison to average-onset CRC (aoCRC, age >60) has not been fully investigated. METHODS 16S rRNA amplicon sequencing was performed in tumor and paired adjacent non-malignant fresh frozen tissue specimens prospectively collected from 136 yoCRC and 140 aoCRC patients. Phyloseq, microbiomeSeq, metagenomeSeq, and NetComi were utilized for bioinformatics analysis. Statistical tests included Fisher's exact test, ANOVA, PERMANOVA with Bonferroni correction, linear regression, and Wilcoxon test. p-value <0.05 was considered statistically significant. FINDINGS yoCRC patients were more likely to have left-sided (72.8 vs. 54.3%), rectal (36.7% vs. 25%), and stage IV (28% vs. 15%) tumors. yoCRC tumors had significantly higher microbial alpha diversity (p = 1.5 × 10-5) and varied beta diversity (R2 = 0.31, p = 0.013) than aoCRC tumors. yoCRC tumors were enriched with Akkermansia and Bacteroides, whereas aoCRC tumors showed greater relative abundances of Bacillus, Staphylococcus, Listeria, Enterococcus, Pseudomonas, Fusobacterium, and Escherichia/Shigella. Akkermansia had a predominantly negative correlation with the microbial communities in yoCRC tumors. yoCRC and aoCRC tumors had distinct microbial profiles associated with tumor location, sidedness, stage, and obesity. Fusobacterium (R2 = -0.23, p = 0.001) and Akkermansia (R2 = 0.05, p = 0.001) abundance correlated with overall survival in yoCRC. INTERPRETATION Our study provides a comprehensive understanding of the microbial perturbations in yoCRC tumors. We identify microbial candidates that may highlight a distinct pathogenesis of yoCRC and serve as preventive, diagnostic, and therapeutic targets. FUNDING Sondra and Stephen Hardis Chair in Oncology Research (A.A.K.).
Collapse
Affiliation(s)
- Shimoli V Barot
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA
| | - Naseer Sangwan
- Shared Laboratory Resources (SLR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kanika G Nair
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie L Schmit
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Shao Xiang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Suneel Kamath
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - David Liska
- Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alok A Khorana
- Cleveland Clinic Taussig Cancer Institute, Department of Hematology-Oncology, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA; Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Kong W, Cheng G, Cao J, Yu J, Wang X, Xu Z. Ocular mucosal homeostasis of teleost fish provides insight into the coevolution between microbiome and mucosal immunity. MICROBIOME 2024; 12:10. [PMID: 38218870 PMCID: PMC10787490 DOI: 10.1186/s40168-023-01716-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/07/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND The visual organ plays a crucial role in sensing environmental information. However, its mucosal surfaces are constantly exposed to selective pressures from aquatic or airborne pathogens and microbial communities. Although few studies have characterized the conjunctival-associated lymphoid tissue (CALT) in the ocular mucosa (OM) of birds and mammals, little is known regarding the evolutionary origins and functions of immune defense and microbiota homeostasis of the OM in the early vertebrates. RESULTS Our study characterized the structure of the OM microbial ecosystem in rainbow trout (Oncorhynchus mykiss) and confirmed for the first time the presence of a diffuse mucosal-associated lymphoid tissue (MALT) in fish OM. Moreover, the microbial communities residing on the ocular mucosal surface contribute to shaping its immune environment. Interestingly, following IHNV infection, we observed robust immune responses, significant tissue damage, and microbial dysbiosis in the trout OM, particularly in the fornix conjunctiva (FC), which is characterized by the increase of pathobionts and a reduction of beneficial taxa in the relative abundance in OM. Critically, we identified a significant correlation between viral-induced immune responses and microbiome homeostasis in the OM, underscoring its key role in mucosal immunity and microbiota homeostasis. CONCLUSIONS Our findings suggest that immune defense and microbiota homeostasis in OM occurred concurrently in early vertebrate species, shedding light on the coevolution between microbiota and mucosal immunity. Video Abstract.
Collapse
Affiliation(s)
- Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofeng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiaqian Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Vasculitis are a group of heterogeneous conditions characterized by chronic inflammation of blood vessels, leading to tissue destruction and organ failure. Vasculitis is an inflammatory process in which immune effector cells infiltrate blood vessels and surrounding tissues. The involvement of inflammasomes seems to occur during inflammatory processes. RECENT FINDINGS Studies have emphasized that genetic susceptibility is an important aspect of the pathogenesis of vasculitis. The innate immune system is a major contributor to these inflammatory diseases, suggesting that the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a key role. NLRP3 activation causes the assembly of a large multiprotein and leads to the secretion of bioactive interleukin (IL)-1β and IL-18 as well as the induction of inflammatory cell death, termed pyroptosis. Accumulating evidence confirms the involvement of this cascade in sterile inflammatory diseases and other vascular diseases. SUMMARY In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, and discuss the potential of the NLRP3 inflammasome as a therapeutic target.
Collapse
Affiliation(s)
- Kamel Hamzaoui
- Laboratory Research 19SP02 'Chronic Pathologies: From Genome to Management', Department of Respiratory Diseases, Tunis El Manar University
| | - Agnès Hamzaoui
- Laboratory Research 19SP02 'Chronic Pathologies: From Genome to Management', Department of Respiratory Diseases, Tunis El Manar University
- Department of Respiratory Diseases, Pavillon B. Abderrahman Mami Hospital, Tunis, Tunisia
| |
Collapse
|
9
|
Behera S, Tanuku NRS, Moturi SRK, Loganathan J, Modali S, Tadi SR, Rachuri V. Huge anthropogenic microbial load during southwest monsoon season in coastal waters of Kakinada, Bay of Bengal. MARINE POLLUTION BULLETIN 2023; 192:114977. [PMID: 37167663 DOI: 10.1016/j.marpolbul.2023.114977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
To examine the influence of anthropogenic activities on the marine ecosystem near the coastal waters of the port city, Kakinada, a study was conducted to investigate the abundance of heterotrophic, indicator and pathogenic bacteria during the spring inter monsoon (SIM) and southwest monsoon (SWM) seasons. A drastic change in the marine bacteria due to the input of allochthonous bacteria during SWM was noticed. An order of magnitude higher abundance of indicators (Escherichia coli and Enterococcus faecalis) and bacterial pathogens (Proteus mirabilis and Pseudomonas aeruginosa) was observed during SWM. In contrast, Chlorophyll-a, heterotrophic bacterial abundance, Aeromonas hydrophila and Klebsiella pneumoniae were higher during SIM. A significant increase in some of the indicator and pathogenic bacterial abundance due to moderate rainfall suggests that the improper drainage system in the city could spread these bacteria, posing a considerable threat to both environment and human health.
Collapse
Affiliation(s)
- Swarnaprava Behera
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naga Radha Srinivas Tanuku
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sri Rama Krishna Moturi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Jagadeesan Loganathan
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Sravani Modali
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Satyanarayana Reddy Tadi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Vivek Rachuri
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| |
Collapse
|
10
|
Cytotoxicity and Antimicrobial Resistance of Aeromonas Strains Isolated from Fresh Produce and Irrigation Water. Antibiotics (Basel) 2023; 12:antibiotics12030511. [PMID: 36978377 PMCID: PMC10044025 DOI: 10.3390/antibiotics12030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The genus Aeromonas has received constant attention in different areas, from aquaculture and veterinary medicine to food safety, where more and more frequent isolates are occurring with increased resistance to antibiotics. The present paper studied the interaction of Aeromonas strains isolated from fresh produce and water with different eukaryotic cell types with the aim of better understanding the cytotoxic capacity of these strains. To study host-cell pathogen interactions in Aeromonas, we used HT-29, Vero, J774A.1, and primary mouse embryonic fibroblasts. These interactions were analyzed by confocal microscopy to determine the cytotoxicity of the strains. We also used Galleria mellonella larvae to test their pathogenicity in this experimental model. Our results demonstrated that two strains showed high cytotoxicity in epithelial cells, fibroblasts, and macrophages. Furthermore, these strains showed high virulence using the G. mellonella model. All strains used in this paper generally showed low levels of resistance to the different families of the antibiotics being tested. These results indicated that some strains of Aeromonas present in vegetables and water pose a potential health hazard, displaying very high in vitro and in vivo virulence. This pathogenic potential, and some recent concerning findings on antimicrobial resistance in Aeromonas, encourage further efforts in examining the precise significance of Aeromonas strains isolated from foods for human consumption.
Collapse
|
11
|
Wang X, Wang Z, Cao J, Dong Y, Chen Y. Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation. MICROBIOME 2023; 11:17. [PMID: 36721179 PMCID: PMC9887785 DOI: 10.1186/s40168-022-01452-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/18/2022] [Indexed: 06/12/2023]
Abstract
Sleep loss is a serious global health concern. Consequences include memory deficits and gastrointestinal dysfunction. Our previous research showed that melatonin can effectively improve cognitive impairment and intestinal microbiota disturbances caused by sleep deprivation (SD). The present study further explored the mechanism by which exogenous melatonin prevents SD-induced cognitive impairments. Here, we established fecal microbiota transplantation, Aeromonas colonization and LPS or butyrate supplementation tests to evaluate the role of the intestinal microbiota and its metabolites in melatonin in alleviating SD-induced memory impairment. RESULTS: Transplantation of the SD-gut microbiota into normal mice induced microglia overactivation and neuronal apoptosis in the hippocampus, cognitive decline, and colonic microbiota disorder, manifesting as increased levels of Aeromonas and LPS and decreased levels of Lachnospiraceae_NK4A136 and butyrate. All these events were reversed with the transplantation of SD + melatonin-gut microbiota. Colonization with Aeromonas and the addition of LPS produced an inflammatory response in the hippocampus and spatial memory impairment in mice. These changes were reversed by supplementation with melatonin, accompanied by decreased levels of Aeromonas and LPS. Butyrate administration to sleep-deprived mice restored inflammatory responses and memory impairment. In vitro, LPS supplementation caused an inflammatory response in BV2 cells, which was improved by butyrate supplementation. This ameliorative effect of butyrate was blocked by pretreatment with MCT1 inhibitor and HDAC3 agonist but was mimicked by TLR4 and p-P65 antagonists. CONCLUSIONS: Gut microbes and their metabolites mediate the ameliorative effects of melatonin on SD-induced cognitive impairment. A feasible mechanism is that melatonin downregulates the levels of Aeromonas and constituent LPS and upregulates the levels of Lachnospiraceae_NK4A136 and butyrate in the colon. These changes lessen the inflammatory response and neuronal apoptosis in the hippocampus through crosstalk between the TLR4/NF-κB and MCT1/ HDAC3 signaling pathways. Video Abstract.
Collapse
Affiliation(s)
- Xintong Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing, 100193 China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, 100193 China
- Department of Nutrition and Health, China Agricultural University, Haidian, Beijing, 100193 China
| |
Collapse
|
12
|
Yang Q, Zhang J, Liu F, Chen H, Zhang W, Yang H, He N, Dong J, Zhao P. A. caviae infection triggers IL-1β secretion through activating NLRP3 inflammasome mediated by NF-κB signaling pathway partly in a TLR2 dependent manner. Virulence 2022; 13:1486-1501. [PMID: 36040120 PMCID: PMC9450903 DOI: 10.1080/21505594.2022.2116169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aeromonas caviae, an important food-borne pathogen, induces serious invasive infections and inflammation. The pro-inflammatory IL-1β functions against pathogenic infections and is elevated in various Aeromonas infection cases. However, the molecular mechanism of A. caviae-mediated IL-1β secretion remains unknown. In this study, mouse macrophages (PMs) were used to establish A. caviae infection model and multiple strategies were utilized to explore the mechanism of IL-1β secretion. IL-1β was elevated in A. caviae infected murine serum, PMs lysates or supernatants. This process triggered NLRP3 levels upregulation, ASC oligomerization, as well as dot gathering of NLRP3 and speck-like signals of ASC in the cytoplasm. MCC950 blocked A. caviae mediated IL-1β release. Meanwhile, NLRP3 inflammasome mediated the release of IL-1β in dose- and time-dependent manners, and the release of IL-1β was dependent on active caspase-1, as well as NLRP3 inflammasome was activated by potassium efflux and cathepsin B release ways. A. caviae also enhanced TLR2 levels, and deletion of TLR2 obviously decreased IL-1β secretion. What’s more, A. caviae resulted in NF-κB p65 nuclear translocation partly in a TLR2-dependent manner. Blocking NF-κB using BAY 11-7082 almost completely inhibited NLRP3 inflammasome first signal pro-IL-1β expression. Blocking TLR2, NF-κB, NLRP3 inflammasome significantly downregulated IL-1β release and TNF-α and IL-6 levels. These data illustrate that A. caviae caused IL-1β secretion in PMs is controlled by NLRP3 inflammasome, of which is mediated by NF-κB pathway and is partially dependent on TLR2, providing basis for drugs against A. caviae.
Collapse
Affiliation(s)
- Qiankun Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jianguo Zhang
- Department of Radiation, The Second People's Hospital of Lianyungang (Lianyungang Tumor Hospital), Lianyungang, Jiangsu 222000, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.,Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|