1
|
Liang Y, Chen Y, Lin Y, Huang W, Qiu Q, Sun C, Yuan J, Xu N, Chen X, Xu F, Shang X, Deng Y, Liu Y, Tan F, He C, Li J, Deng Q, Zhang X, Guan H, Liang Y, Fang X, Jiang X, Han L, Huang L, Yang Z. The increased tendency for anemia in traditional Chinese medicine deficient body constitution is associated with the gut microbiome. Front Nutr 2024; 11:1359644. [PMID: 39360281 PMCID: PMC11445043 DOI: 10.3389/fnut.2024.1359644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Constitution is a valuable part of traditional Chinese medicine theory; it is defined as the internal foundation for the occurrence, development, transformation and outcome of diseases, and has its characteristic gut microbiota. Previous study showed that deficiency constitution was related to lower Hb counts. However, no research has examined how alterations in the gut microbiome induced by deficiency constitution may increase the tendency for anemia. Methods We used a multiomics strategy to identify and quantify taxonomies and compounds found under deficient constitution individuals and further explore the possible pathological factors that affect red blood cell indices. Results ① People with deficient constitution showed lower hemoglobin (Hb), more Firmicutes, less Bacteroidetes, and higher α diversity. ② We identified Escherichia coli, Clostridium bolteae, Ruminococcus gnavus, Streptococcus parasanguinis and Flavonifractor plautii as potential biomarkers of deficient constitution. ③ Slackia piriformis, Clostridium_sp_L2_50 and Bacteroides plebeius were enriched in balanced-constitution individuals, and Parabacteroides goldsteinii was the key bacterial marker of balanced constitution. ④ Flavonifractor plautii may be a protective factor against the tendency for anemia among deficient individuals. ⑤ Ruminococcus gnavus may be the shared microbe base of deficiency constitution-related the tendency for anemia. ⑥ The microorganism abundance of the anaerobic phenotype was lower in deficient constitution group. ⑦ Alterations in the microbiome of deficient-constitution individuals were associated with worse health status and a greater risk of anemia, involving intestinal barrier function, metabolism and immune responses, regulated by short-chain fatty acids and bile acid production. Conclusion The composition of the gut microbiome was altered in people with deficient constitution, which may explain their poor health status and tendency toward anemia.
Collapse
Affiliation(s)
- Yuanjun Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanzhao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinwei Qiu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chen Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiamin Yuan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ning Xu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xinyan Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxiao Shang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yusheng Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanmin Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fei Tan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chunxiang He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jiasheng Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qinqin Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huahua Guan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yongzhu Liang
- Zhuhai Branch of Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, China
| | - Xiaodong Fang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuanting Jiang
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., Shenzhen, China
| | - Li Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhimin Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Dong C, Liu Z, Zhu C, Zhang Y, Yang X, Xu X, Guan Q, Xia Y. Contribution of serum elements to blood pressure during pregnancy by impacting gut microbiota: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133383. [PMID: 38160557 DOI: 10.1016/j.jhazmat.2023.133383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Exposure to environmental elements can alter gut microbiota, further affecting host health. Exploring the interrelationships among element exposure, gut microbiota and blood pressure (BP) during pregnancy, as well as the mediating roles of gut microbiota, is warranted, which holds implications for maternal and offspring health. In a prospective cohort study between 2017-2018, 733 pregnant women were included. The serum elements and gut microbiota during the second trimester were assessed, and BP was collected during the second and third trimester and before delivery. Fourteen associations were identified between serum elements and BP, including positive associations of zinc (Zn) and thallium (Tl) with systolic BP during the second trimester. Rubidium (Rb) showed a positive association with Pielou's evenness. Serum elements, such as Tl and Rb, were significantly associated with the relative abundance of bacteria and co-abundance groups (CAGs). Alpha diversity was negatively associated with BP levels and trajectories. Moreover, 15 associations between gut microbiota and BP were shown. Finally, mediation analysis confirmed that CAG2 and Pielou's evenness mediated the associations of Tl and Rb with BP, respectively. We concluded that serum elements can contribute to BP changes during pregnancy through gut microbiota, suggesting gut microbiota-targeted approach as a potential intervention.
Collapse
Affiliation(s)
- Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Chun Zhu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yuepei Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Xiaoyu Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China.
| |
Collapse
|
3
|
Goosen C, Proost S, Baumgartner J, Mallick K, Tito RY, Barnabas SL, Cotton MF, Zimmermann MB, Raes J, Blaauw R. Associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children: a two-way factorial case-control study. J Hum Nutr Diet 2023; 36:819-832. [PMID: 36992541 PMCID: PMC10946596 DOI: 10.1111/jhn.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) and iron deficiency (ID) affect many African children. Both HIV and iron status interact with gut microbiota composition and related biomarkers. The study's aim was to determine the associations of HIV and iron status with gut microbiota composition, gut inflammation and gut integrity in South African school-age children. METHODS In this two-way factorial case-control study, 8- to 13-year-old children were enrolled into four groups based on their HIV and iron status: (1) With HIV (HIV+) and ID (n = 43), (2) HIV+ and iron-sufficient nonanaemic (n = 41), (3) without HIV (HIV-) and ID (n = 44) and (4) HIV- and iron-sufficient nonanaemic (n = 38). HIV+ children were virally suppressed (<50 HIV RNA copies/ml) on antiretroviral therapy (ART). Microbial composition of faecal samples (16S rRNA sequencing) and markers of gut inflammation (faecal calprotectin) and gut integrity (plasma intestinal fatty acid-binding protein [I-FABP]) were assessed. RESULTS Faecal calprotectin was higher in ID versus iron-sufficient nonanaemic children (p = 0.007). I-FABP did not significantly differ by HIV or iron status. ART-treated HIV (redundancy analysis [RDA] R2 = 0.009, p = 0.029) and age (RDA R2 = 0.013 p = 0.004) explained the variance in the gut microbiota across the four groups. Probabilistic models showed that the relative abundance of the butyrate-producing genera Anaerostipes and Anaerotruncus was lower in ID versus iron-sufficient children. Fusicatenibacter was lower in HIV+ and in ID children versus their respective counterparts. The prevalence of the inflammation-associated genus Megamonas was 42% higher in children with both HIV and ID versus HIV- and iron-sufficient nonanaemic counterparts. CONCLUSIONS In our sample of 8- to 13-year-old virally suppressed HIV+ and HIV- children with or without ID, ID was associated with increased gut inflammation and changes in the relative abundance of specific microbiota. Moreover, in HIV+ children, ID had a cumulative effect that further shifted the gut microbiota to an unfavourable composition.
Collapse
Affiliation(s)
- Charlene Goosen
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jeannine Baumgartner
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of Nutritional SciencesKing's College LondonLondonUK
| | - Kashish Mallick
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Raul Y. Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Shaun L. Barnabas
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Mark F. Cotton
- Department of Paediatrics and Child Health, Family Centre for Research with UbuntuStellenbosch UniversityCape TownSouth Africa
| | - Michael B. Zimmermann
- Laboratory of Human Nutrition, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and ImmunologyRega Institute, KU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Renée Blaauw
- Division of Human Nutrition, Department of Global Health, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
4
|
Yang X, Zhang M, Zhang Y, Wei H, Guan Q, Dong C, Deng S, Tun HM, Xia Y. Ecological change of the gut microbiota during pregnancy and progression to dyslipidemia. NPJ Biofilms Microbiomes 2023; 9:14. [PMID: 37012285 PMCID: PMC10070613 DOI: 10.1038/s41522-023-00383-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The composition of the gut microbiome was previously found to be associated with clinical responses to dyslipidemia, but there is limited consensus on the dynamic change of the gut microbiota during pregnancy and the specific microbiome characteristics linked to dyslipidemia in pregnant women. We collected fecal samples from 513 pregnant women at multiple time points during pregnancy in a prospective cohort. Taxonomic composition and functional annotations were determined by 16S rRNA amplicon sequencing and shotgun metagenomic sequencing. The predictive potential of gut microbiota on the risk of dyslipidemia was determined. The gut microbiome underwent dynamic changes during pregnancy, with significantly lower alpha diversity observed in dyslipidemic patients compared to their healthy counterparts. Several genera, including Bacteroides, Paraprevotella, Alistipes, Christensenellaceae R7 group, Clostridia UCG-014, and UCG-002 were negatively associated with lipid profiles and dyslipidemia. Further metagenomic analysis recognized a common set of pathways involved in gastrointestinal inflammation, where disease-specific microbes played an important role. Machine learning analysis confirmed the link between the microbiome and its progression to dyslipidemia, with a micro-averaged AUC of 0.824 (95% CI: 0.782-0.855) combined with blood biochemical data. Overall, the human gut microbiome, including Alistipes and Bacteroides, was associated with the lipid profile and maternal dyslipidemia during pregnancy by perturbing inflammatory functional pathways. Gut microbiota combined with blood biochemical data at the mid-pregnancy stage could predict the risk of dyslipidemia in late pregnancy. Therefore, the gut microbiota may represent a potential noninvasive diagnostic and therapeutic strategy for preventing dyslipidemia in pregnancy.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqing Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Siting Deng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hein Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Liang X, Wang R, Luo H, Liao Y, Chen X, Xiao X, Li L. The interplay between the gut microbiota and metabolism during the third trimester of pregnancy. Front Microbiol 2022; 13:1059227. [PMID: 36569048 PMCID: PMC9768424 DOI: 10.3389/fmicb.2022.1059227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota undergoes dynamic changes during pregnancy. The gut microbial and metabolic networks observed in pregnant women have not been systematically analyzed. The primary purpose of this study was to explore the alterations in the gut microbiota and metabolism during late pregnancy and investigate the associations between the gut microbiota and metabolism. A total of thirty healthy pregnant women were followed from 30 to 32 weeks of gestation to full term. Fecal samples were collected for microbiome analysis and untargeted metabolomic analysis. The characteristics of the gut microbiota were evaluated by 16S ribosomal RNA gene sequencing of the V3-V4 regions. The plasma samples were used for untargeted metabolomic analysis with liquid chromatography-tandem mass spectrometry. The interplay between the gut microbiota and metabolism was analyzed further by bioinformatics approaches. We found that the relative abundances of Sellimonas and Megamonas were higher at full term, whereas that of Proteobacteria was lower. The correlation network of the gut microbiota tended to exhibit weaker connections from 32 weeks of gestation to the antepartum timepoint. Changes in the gut microbiota during late pregnancy were correlated with the absorbance and metabolism of microbiota-associated metabolites, such as fatty acids and free amino acids, thereby generating a unique metabolic system for the growth of the fetus. Decreasing the concentration of specific metabolites in plasma and increasing the levels of palmitic acid and 20-hydroxyarachidonic acid may enhance the transformation of a proinflammatory immune state as pregnancy progresses.
Collapse
Affiliation(s)
- Xinyuan Liang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Rongning Wang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yihong Liao
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaowen Chen
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China,*Correspondence: Xiaomin Xiao,
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China,Liping Li,
| |
Collapse
|