1
|
Xia J, Lin L, Ju R, Xu C, Mo G, Zhang X. GH inhibits ALV-J replication and restricts cell cycle by activating PI3K/Akt signaling pathway. Poult Sci 2025; 104:104514. [PMID: 39586129 PMCID: PMC11625326 DOI: 10.1016/j.psj.2024.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Growth hormone (GH) plays a crucial role in growth, sexual maturity, and immunity in chickens. Avian leukosis virus subgroup J (ALV-J) is an exogenous tumorigenic retrovirus that primarily induces immunosuppression, growth retardation, decreased egg production, tumors formation, and even death in chickens. Previous studies have suggested that GH is involved in the regulation of innate immunity and inflammation. However, the specific role of GH in response to ALV-J remains unclear. In this study, we observed a significant upregulation of GH protein expression in the plasma of ALV infected chickens, and a marked increase in GH mRNA in ALV-J infected cells. We found that lower gp85 expression correlated with higher GH expression in immune tissues, suggesting that GH may inhibit gp85 expression. Additionally, GH overexpression enhanced the expression of interferons (IFN-α, IFN-β), interferon-stimulating genes (Mx1, ASCL1, CH25H), and pro-inflammatory factors (Mx1, ASCL1, CH25H) in DF-1 cells infected with ALV-J. GH also affected the cell cycle by regulating the expression of cell proliferation-related genes (p21, PCNA, Cyclin B2, Cyclin D1, Cyclin D2) and cell apoptosis-related genes (p53, Fas, Cyct, Caspase-1, Caspase-3, Caspase-8). More importantly, we found that GH restricted cell proliferation and apoptosis, and inhibited the replication of ALV-J by activating the PI3K/Akt signaling pathway in DF-1 cells. In conclusion, these results indicate GH plays a role in the antiviral response against the replication of ALV-J, providing evidence of an interaction between GH and the innate immunity in chickens.
Collapse
Affiliation(s)
- Junliang Xia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Ling Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Rongyang Ju
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Chengxun Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China
| | - Guodong Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China; Guangxi Vocational University of Agriculture, Nanning, 530007 Guangxi, PR China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, Guangzhou, Guangdong, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, PR China.
| |
Collapse
|
2
|
Zhao Y, Zhao C, Deng Y, Pan M, Mo G, Liao Z, Zhang X, Zhang D, Li H. PMAIP1 promotes J subgroup avian leukosis virus replication by regulating mitochondrial function. Poult Sci 2024; 103:103617. [PMID: 38547674 PMCID: PMC11180372 DOI: 10.1016/j.psj.2024.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 06/05/2024] Open
Abstract
Avian leukosis virus Subgroup J (ALV-J) exhibits high morbidity and pathogenicity, affecting approximately 20% of poultry farms. It induces neoplastic diseases and immunosuppression. Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), a proapoptotic mitochondrial protein in the B-cell lymphoma-2 (Bcl-2) family, plays a role in apoptosis in cancer cells. However, the connection between the PMAIP1 gene and ALV-J pathogenicity remains unexplored. This study investigates the potential impact of the PMAIP1 gene on ALV-J replication and its regulatory mechanisms. Initially, we examined PMAIP1 expression using quantitative real-time PCR (qRT-PCR) in vitro and in vivo. Furthermore, we manipulated PMAIP1 expression in chicken fibroblast cells (DF-1) and assessed its effects on ALV-J infection through qRT-PCR, immunofluorescence assay (IFA), and western blotting (WB). Our findings reveal a significant down-regulation of PMAIP1 in the spleen, lung, and kidney, coupled with an up-regulation in the bursa and liver of ALV-J infected chickens compared to uninfected ones. Additionally, DF-1 cells infected with ALV-J displayed a notable up-regulation of PMAIP1 at 6, 12, 24, 48, 74, and 108 h. Over-expression of PMAIP1 enhanced ALV-J replication, interferon expression, and proinflammatory factors. Conversely, interference led to contrasting results. Furthermore, we observed that PMAIP1 promotes virus replication by modulating mitochondrial function. In conclusion, the PMAIP1 gene facilitates virus replication by regulating mitochondrial function, thereby enriching our understanding of mitochondria-related genes and their involvement in ALV-J infection, offering valuable insights for avian leukosis disease resistance strategies.
Collapse
Affiliation(s)
- Yongxia Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Yuelin Deng
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China; Department of Animal Nutrition System, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Guodong Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Zhiying Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Hongmei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China.
| |
Collapse
|
3
|
Wang X, Zheng S, Fang C, Liang X, Yang Y. UBE2J1 promotes ALV-A proviral DNA synthesis through the STAT3/IRF1 signaling pathway. Vet Microbiol 2024; 291:110012. [PMID: 38387235 DOI: 10.1016/j.vetmic.2024.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
The ubiquitin-binding enzyme E2J1 is located on the endoplasmic reticulum membrane. It plays a role in transport throughout the process of ubiquitination. In mammals, UBE2J1 can promote RNA virus replication. However, the biological function of chicken UBE2J1 is unclear. In this study, chicken UBE2J1 was cloned for the first time, and UBE2J1 overexpression and shRNA knockdown plasmids were constructed. In chicken embryo fibroblasts, overexpression of UBE2J1 promoted the replication of subtype A avian leukosis virus, while knockdown of UBE2J1 inhibited the replication of ALV-A virus. In addition, we divided virus replication into virus adsorption and invasion into DF-1 cells, synthesis of proviral DNA, and release of viral particles. UBE2J1 promoted the replication of ALV-A virus by promoting the synthesis of proviral DNA. This result was caused by UBE2J1 inhibiting the production of interferon by inhibiting the STAT3/IRF1 pathway. We mutated ser at position 184 of UBE2J1 to Gly and found that this site plays a role as the phosphorylation site of UBE2J1. We confirmed that UBE2J1 promotes ALV-A replication in chicken embryo fibroblasts by inhibiting the STAT3/IRF1 pathway. This study provides new ideas and insights into ubiquitin-related proteins and antiviral immunity.
Collapse
Affiliation(s)
- Xingming Wang
- School of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Shiling Zheng
- School of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Chun Fang
- School of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xiongyan Liang
- School of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yuying Yang
- School of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China.
| |
Collapse
|
4
|
Li H, Chen Y. Whole-genome resequencing to explore genome‑wide single nucleotide polymorphisms and genes associated with avian leukosis virus subgroup J infection in chicken. 3 Biotech 2023; 13:417. [PMID: 38031589 PMCID: PMC10682322 DOI: 10.1007/s13205-023-03834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic loss in the poultry industry. Currently, no effective vaccine or drug is available against this virus. Therefore, it is imperative to explore and understand the molecular regulatory mechanisms underlying ALV-J infection. In this study, blood samples from 21 ALV-J-infected and 22 ALV-J-uninfected (DZ) chickens (JZ) were analyzed by whole-genome resequencing (WGR). By combining the fixation index (FST) with the nucleotide diversity (π) ratio based on WGR data, 425 candidate genes were identified. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the top 20 enriched pathways, among which 9 pathways were significantly associated with diseases, including endometrial cancer, Chagas disease, PD-L1 expression and PD-1 checkpoint pathway in cancer, colorectal cancer, endocrine resistance, fluid shear stress, atherosclerosis, basal cell carcinoma, non-small cell lung cancer, and melanoma. Fourteen single nucleotide polymorphisms related to twelve genes showed a notable difference between DZ and JZ group chickens. The genes included COMMD3, PPP1CB, VEGFA, GTF2H1, NOTCH2, ITPR1, FGFR4, GNAS, NECTIN1, WNT2B, PPP1CC, and MRC2. These findings may provide a valuable foundation for further exploration of the pathogenesis of ALV-J in chickens.
Collapse
Affiliation(s)
- Hongwei Li
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007 China
| | - Yuan Chen
- School of Life Science, Huizhou University, No. 46 Yanda Road, Huizhou, 516007 China
| |
Collapse
|
5
|
Han S, Zhao S, Zhao Y, Liu M, Han L, Han L. The novel lncRNA-9802/miR-1646 axis affects cell proliferation of DF-1 by regulating Bax/Bcl-2 signaling pathway. Res Vet Sci 2023; 164:105047. [PMID: 37837750 DOI: 10.1016/j.rvsc.2023.105047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Marek's disease (MD) is a severe infectious and immunosuppressive neoplastic condition that significantly impacts the global poultry industry. Investigating the role of non-coding RNA in pathogenic mechanisms of MD virus (MDV) offers valuable insights for the effective prevention and management of MD. A higher expression of the novel lncRNA-9802 can be found in spleen tissues of MDV-infected chickens from our prior research, and there is a potential association between lncRNA-9802 and cell proliferation. In this study, we further demonstrated that over-expression of lncRNA-9802 could promote the proliferation of DF-1 cells. It has been established that lncRNA-9802 mediated its effects by binding to miR-1646, and further modulated the expression of the Bax and Bcl-2 genes. Deciphering the role of the recently discovered MD-associated lncRNA-9802/miR-1646 axis provides valuable theoretical basis for decoding the molecular mechanisms underlying MDV pathogenesis.
Collapse
Affiliation(s)
- Shuo Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuang Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yaolu Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Liping Han
- Department of Bioscience, Changchun Normal University, Changchun 130032, China.
| | - Limei Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Ma X, Tian Y, Zhang W, Zhang R, Xu X, Han J, Jiang Y, Wang X, Man C. Stress-induced immunosuppression inhibits immune response to infectious bursal disease virus vaccine partially by miR-27b-3p/SOCS3 regulatory gene network in chicken. Poult Sci 2023; 102:103164. [PMID: 39492374 PMCID: PMC10628791 DOI: 10.1016/j.psj.2023.103164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which often reduces the prevention and control effects of various vaccines, including infectious bursal disease virus (IBDV) vaccine, and brings enormous economic losses to the poultry industry. However, the molecular mechanisms of SIIS inhibiting immune response to IBDV vaccine remain unclear. In this study, suppressor of cytokine signaling 3 (SOCS3) gene was selected and stress-induced immunosuppressed chickens were simulated using dexamethasone (Dex). Quantitative real-time PCR (qRT-PCR) was conducted to analyze its expression characteristics and game relationships between SOCS3 gene and miR-27b-3p (it could target SOCS3 gene) in the process of SIIS inhibiting immune response to IBDV vaccine in chicken, and the potential application value of circulating miR-27b-3p as a biomarker was also identified. The results showed that SOCS3 gene and miR-27b-3p were significantly differentially expressed in the candidate tissues during SIIS inhibiting the immune response to IBDV (P < 0.05), respectively, which were key factors involved in the process. Moreover, miR-27b-3p and SOCS3 gene showed game regulation relationships in several tissues during the process, so the miR-27b-3p/SOCS3 regulatory network was one of the key mechanisms of SOCS3 gene participating in the process. Circulating miR-27b-3p was differentially expressed in serum at 10 time points (1, 2, 3, 4, 5, 7, 14, 21, 28, and 35 days postimmunization (dpi)) in the process (P < 0.05), showing that circulating miR-27b-3p was a valid candidate target as a molecular marker for detecting SIIS inhibiting the IBDV immune response. This study can provide references for further studying molecular mechanisms of stress affecting immune response.
Collapse
Affiliation(s)
- Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
7
|
Zhang Y, Xu L, Zhang Z, Su X, Wang Z, Wang T. Enterovirus D68 infection upregulates SOCS3 expression to inhibit JAK-STAT3 signaling and antagonize the innate interferon response of the host. Virol Sin 2023; 38:755-766. [PMID: 37657555 PMCID: PMC10590701 DOI: 10.1016/j.virs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
Enterovirus D68 (EV-D68) can cause respiratory diseases and acute flaccid paralysis, posing a great threat to public health. Interferons are cytokines secreted by host cells that have broad-spectrum antiviral effects, inducing the expression of hundreds of interferon-stimulated genes (ISGs). EV-D68 activates ISG expression early in infection, but at a later stage, the virus suppresses ISG expression, a strategy evolved by EV-D68 to antagonize interferons. Here, we explore a host protein, suppressor of cytokine signaling 3 (SOCS3), is upregulated during EV-D68 infection and antagonizes the antiviral effects of type I interferon. We subsequently demonstrate that the structural protein of EV-D68 upregulated the expression of RFX7, a transcriptional regulator of SOCS3, leading to the upregulation of SOCS3 expression. Further exploration revealed that SOCS3 plays its role by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3). The expression of SOCS3 inhibited the expression of ISG, thereby inhibiting the antiviral effect of type I interferon and promoting EV-D68 transcription, protein production, and viral titer. Notably, a truncated SOCS3, generated by deleting the kinase inhibitory region (KIR) domain, failed to promote replication and translation of EV-D68. Based on the above studies, we designed a short peptide named SOCS3 inhibitor, which can specifically bind and inhibit the KIR structural domain of SOCS3, significantly reducing the RNA and protein levels of EV-D68. In summary, our results demonstrated a novel mechanism by which EV-D68 inhibits ISG transcription and antagonizes the antiviral responses of host type I interferon.
Collapse
Affiliation(s)
- Yuling Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Leling Xu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhe Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xin Su
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China; Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China.
| |
Collapse
|
8
|
Zhang X, Xie T, Li X, Feng M, Mo G, Zhang Q, Zhang X. Transcriptome Sequencing Reveals That Intact Expression of the Chicken Endogenous Retrovirus chERV3 In Vitro Can Possibly Block the Key Innate Immune Pathway. Animals (Basel) 2023; 13:2720. [PMID: 37684986 PMCID: PMC10486640 DOI: 10.3390/ani13172720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Endogenous retroviruses (ERVs) are viral sequences that have integrated into the genomes of vertebrates. Our preliminary transcriptome sequencing analysis revealed that chERV3 is active and is located on chromosome 1:32602284-32615631. We hypothesized that chERV3 may have a role in the host innate immune response to viral infection. In this study, using reverse genetics, we constructed the puc57-chERV3 full-length reverse cloning plasmid in vitro. We measured the p27 content in culture supernatant by enzyme-linked immunosorbent assay (ELISA). Finally, transcriptome analysis was performed to analyze the function of chERV3 in innate immunity. The results showed that chERV3 may generate p27 viral particles. We found that compared to the negative control (NC) group (transfected with pMD18T-EGFP), the chERV3 group exhibited 2538 up-regulated differentially expressed genes (DEGs) and 1828 down-regulated DEGs at 24 hours (h) and 1752 up-regulated DEGs and 1282 down-regulated DEGs at 48 h. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the down-regulated DEGs were enriched mainly in immune-related processes such as the inflammatory response, innate immune response, and Toll-like receptor signaling pathway. GSEA showed that the Toll-like receptor signaling pathway was suppressed by chERV3 at both time points. We hypothesized that chERV3 can influence the activation of the innate immune pathway by blocking the Toll-like receptor signaling pathway to achieve immune evasion.
Collapse
Affiliation(s)
- Xi Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Tingting Xie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiaoqi Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Qihong Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.)
- Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
9
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals (Basel) 2023; 13:2358. [PMID: 37508135 PMCID: PMC10376345 DOI: 10.3390/ani13142358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Avian leukosis viruses (ALVs) have been virtually eradicated from commercial poultry. However, some niches remain as pockets from which this group of viruses may reemerge and induce economic losses. Such is the case of fancy, hobby, backyard chickens and indigenous or native breeds, which are not as strictly inspected as commercial poultry and which have been found to harbor ALVs. In addition, the genome of both poultry and of several gamebird species contain endogenous retroviral sequences. Circumstances that support keeping up surveillance include the detection of several ALV natural recombinants between exogenous and endogenous ALV-related sequences which, combined with the well-known ability of retroviruses to mutate, facilitate the emergence of escape mutants. The subgroup most prevalent nowadays, ALV-J, has emerged as a multi-recombinant which uses a different receptor from the previously known subgroups, greatly increasing its cell tropism and pathogenicity and making it more transmissible. In this review we describe the ALVs, their different subgroups and which receptor they use to infect the cell, their routes of transmission and their presence in different bird collectivities, and the immune response against them. We analyze the different systems to control them, from vaccination to the progress made editing the bird genome to generate mutated ALV receptors or selecting certain haplotypes.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Wu H, Zaib G, Luo H, Guo W, Wu T, Zhu S, Wang C, Chai W, Xu Q, Cui H, Hu X. CCL4 participates in the reprogramming of glucose metabolism induced by ALV-J infection in chicken macrophages. Front Microbiol 2023; 14:1205143. [PMID: 37333648 PMCID: PMC10272584 DOI: 10.3389/fmicb.2023.1205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Interferon and chemokine-mediated immune responses are two general antiviral programs of the innate immune system in response to viral infections and have recently emerged as important players in systemic metabolism. This study found that the chemokine CCL4 is negatively regulated by glucose metabolism and avian leukosis virus subgroup J (ALV-J) infection in chicken macrophages. Low expression levels of CCL4 define this immune response to high glucose treatment or ALV-J infection. Moreover, the ALV-J envelope protein is responsible for CCL4 inhibition. We confirmed that CCL4 could inhibit glucose metabolism and ALV-J replication in chicken macrophages. The present study provides novel insights into the antiviral defense mechanism and metabolic regulation of the chemokine CCL4 in chicken macrophages.
Collapse
Affiliation(s)
- Huixian Wu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gul Zaib
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huan Luo
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wang Guo
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Wu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shutong Zhu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenjun Wang
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenxian Chai
- Changzhou Animal Disease Prevention and Control Center, Changzhou, Jiangsu, China
| | - Qi Xu
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
12
|
Chen X, Wang X, Yang Y, Fang C, Liu J, Liang X, Yang Y. A20 Enhances the Expression of the Proto-Oncogene C-Myc by Downregulating TRAF6 Ubiquitination after ALV-A Infection. Viruses 2022; 14:v14102210. [PMID: 36298765 PMCID: PMC9607361 DOI: 10.3390/v14102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Hens infected with avian leukosis virus subgroup A (ALV-A) experience stunted growth, immunosuppression, and potentially, lymphoma development. According to past research, A20 can both promote and inhibit tumor growth. In this study, DF-1 cells were infected with ALV-A rHB2015012, and Gp85 expression was measured at various time points. A recombinant plasmid encoding the chicken A20 gene and short hairpin RNA targeting chicken A20 (A20-shRNA) was constructed and transfected into DF-1 cells to determine the effect on ALV-A replication. The potential signaling pathways of A20 were explored using bioinformatics prediction, co-immunoprecipitation, and other techniques. The results demonstrate that A20 and ALV-A promoted each other after ALV-A infection of DF-1 cells, upregulated A20, inhibited TRAF6 ubiquitination, and promoted STAT3 phosphorylation. The phosphorylated-STAT3 (p-STAT3) promoted the expression of proto-oncogene c-myc, which may lead to tumorigenesis. This study will help to further understand the tumorigenic process of ALV-A and provide a reference for preventing and controlling ALV.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xingming Wang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Yuxin Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Chun Fang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Jing Liu
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| | - Yuying Yang
- College of Animal Science, Yangtze University, No.88, Jingmi Road, Jingzhou 434025, China
- Correspondence: (X.L.); (Y.Y.)
| |
Collapse
|
13
|
Tang S, Li J, Chang YF, Lin W. Avian Leucosis Virus-Host Interaction: The Involvement of Host Factors in Viral Replication. Front Immunol 2022; 13:907287. [PMID: 35693802 PMCID: PMC9178239 DOI: 10.3389/fimmu.2022.907287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes various diseases associated with tumor formation and decreased fertility. Moreover, ALV induces severe immunosuppression, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. There is growing evidence showing the interaction between ALV and the host. In this review, we will survey the present knowledge of the involvement of host factors in the important molecular events during ALV infection and discuss the futuristic perspectives from this angle.
Collapse
Affiliation(s)
- Shuang Tang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wencheng Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|