1
|
Uddipto K, Quinlivan JA, Mendz GL. The Existence of an Intra-Amniotic Microbiome: Assessing a Controversy. BIOLOGY 2024; 13:888. [PMID: 39596843 PMCID: PMC11591977 DOI: 10.3390/biology13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The existence of intra-amniotic and placental microbiomes during pregnancy has been the source of considerable debate, with research yielding conflicting evidence. This study evaluated investigations into the putative presence of these microbiomes in healthy pregnancies by identifying design and data interpretation issues, particularly concerning contamination in samples with low-density bacterial DNA. Positive findings from diverse populations suggest a consistent presence of microbiota in the intra-amniotic space. Negative conclusions regarding the existence of these prenatal microbiomes emphasise the impact of contamination in the analysis of samples with low-density bacterial DNA. This study concluded that there is no definitive evidence to refute the existence of intra-amniotic microbiomes in healthy pregnancies. Also, it provides suggestions for controlling potential contamination factors in future research on intra-amniotic and placental microbial populations.
Collapse
Affiliation(s)
- Kumar Uddipto
- School of Medicine, Sydney Program, The University of Notre Dame Australia, 160 Oxford St., Darlinghurst, NSW 2010, Australia;
| | - Julie A. Quinlivan
- Institute for Health Research, The University of Notre Dame Australia, 32 Mouat St., Fremantle, WA 6160, Australia;
| | - George L. Mendz
- School of Medicine, Sydney Program, The University of Notre Dame Australia, 160 Oxford St., Darlinghurst, NSW 2010, Australia;
| |
Collapse
|
2
|
Gilley SP, Ruebel ML, Chintapalli SV, Wright CJ, Rozance PJ, Shankar K. Calorie restriction during gestation impacts maternal and offspring fecal microbiome in mice. Front Endocrinol (Lausanne) 2024; 15:1423464. [PMID: 39429739 PMCID: PMC11487197 DOI: 10.3389/fendo.2024.1423464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024] Open
Abstract
Background Maternal undernutrition is the most common cause of fetal growth restriction (FGR) worldwide. FGR increases morbidity and mortality during infancy, as well as contributes to adult-onset diseases including obesity and type 2 diabetes. The role of the maternal or offspring microbiome in growth outcomes following FGR is not well understood. Methods FGR was induced by 30% maternal calorie restriction (CR) during the second half of gestation in C57BL/6 mice. Pup weights were obtained on day of life 0, 1, and 7 and ages 3, 4 and 16 weeks. Fecal pellets were collected from pregnant dams at gestational day 18.5 and from offspring at ages 3 and 4 weeks of age. Bacterial genomic DNA was used for amplification of the V4 variable region of the 16S rRNA gene. Multivariable associations between maternal CR and taxonomic abundance were assessed using the MaAsLin2 package. Associations between microbial taxa and offspring outcomes were performed using distance-based redundancy analysis and Pearson correlations. Results FGR pups weighed about 20% less than controls. Beta but not alpha diversity differed between control and CR dam microbiomes. CR dams had lower relative abundance of Turicibacter, Flexispira, and Rikenella, and increased relative abundance of Parabacteroides and Prevotella. Control and FGR offspring microbiota differed by beta diversity at ages 3 and 4 weeks. At 3 weeks, FGR offspring had decreased relative abundance of Akkermansia and Sutterella and increased relative abundance of Anaerostipes and Paraprevotella. At 4 weeks, FGR animals had decreased relative abundance of Allobaculum, Sutterella, Bifidobacterium, and Lactobacillus, among others, and increased relative abundance of Turcibacter, Dorea, and Roseburia. Maternal Helicobacter abundance was positively associated with offspring weight. Akkermansia abundance at age 3 and 4 weeks was negatively associated with adult weight. Conclusions We demonstrate gut microbial dysbiosis in pregnant dams and offspring at two timepoints following maternal calorie restriction. Additional research is needed to test for functional roles of the microbiome in offspring growth outcomes.
Collapse
Affiliation(s)
- Stephanie P. Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| | - Meghan L. Ruebel
- Microbiome and Metabolism Research Unit (MMRU), United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Southeast Area, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sree V. Chintapalli
- Arkansas Children’s Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Clyde J. Wright
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paul J. Rozance
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Shen J, Sun H, Chu J, Gong X, Liu X. Cervicovaginal microbiota: a promising direction for prevention and treatment in cervical cancer. Infect Agent Cancer 2024; 19:13. [PMID: 38641803 PMCID: PMC11027553 DOI: 10.1186/s13027-024-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
Cervical cancer is a common malignancy in women, with high incidence rate and mortality. Persistent infection of high-risk human papillomavirus (HPV) is the most important risk factor for cervical cancer and precancerous lesions. Cervicovaginal microbiota (CVM) plays an essential role in the defense of HPV infections and prevention of subsequent lesions. Dominance of Lactobacillus is the key of CVM homeostasis, which can be regulated by host, exogenous and endogenous factors. Dysbiosis of CVM, including altered microbial, metabolic, and immune signatures, can contribute to persist HPV infection, leading to cervical cancer. However, there is no evidence of the causality between CVM and cervical cancer, and the underlying mechanism remains unexplored. Considering the close correlation between CVM dysbiosis and persistent HPV infection, this review will overview CVM, its role in cervical cancer development and related mechanisms, and the prospects for therapeutic applications.
Collapse
Affiliation(s)
- Jie Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Hao Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Jing Chu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| | - Xiaojun Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| |
Collapse
|
4
|
Wang R, Wang M, Zeng Q, Wang L, Zhang Q, Pu S, Ma X, Wang J, Pan Y. Correlation between microbial characteristics and reproductive status of the yak uterus based on macrogenomic analysis. BMC Vet Res 2024; 20:4. [PMID: 38172906 PMCID: PMC10763020 DOI: 10.1186/s12917-023-03845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the microbial characteristics of yak uteri collected using intrauterine cotton swabs (CS) during different reproductive stages and the correlation of these microbial characteristics with reproductive status. METHODS We used a macrogenomic approach to analyze the functional aspects of different microorganisms in samples collected during the pre-estrus, estrus, late estrus, and diestrus stages. RESULTS The results revealed the presence of 1293 microbial genera and 3401 microbial species in the uteri of yaks at different reproductive stages. The dominant bacterial species varied across the different periods, with Micrococcus and Proteus being dominant during pre-estrus; Pseudomonas, Clostridium, Flavobacterium, Bacillus, and Staphylococcus during estrus; Acinetobacter, Bacillus and Proteus during late estrus; and Pseudomonas, Escherichia coli, and Proteus during diestrus. DISCUSSION The primary functions of these bacteria are enriched in various metabolic pathways, including carbohydrate and amino acid metabolism, intracellular transport and secretion, post-translational protein modification, and drug resistance. These findings suggest that the microbial diversity in the uterus of yaks plays a crucial role in reproductive regulation and can help prevent reproductive tract-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qiaoying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Sisi Pu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Ruiz-Durán S, Tenorio CM, Vico-Zúñiga I, Manzanares S, Puertas-Prieto A, Altmäe S, Vargas E. Microenvironment of the Lower Reproductive Tract: Focus on the Cervical Mucus Plug. Semin Reprod Med 2023; 41:200-208. [PMID: 38262442 DOI: 10.1055/s-0043-1778661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The female lower reproductive tract microbiota is a complex ecosystem comprising various microorganisms that play a pivotal role in maintaining women's reproductive well-being. During pregnancy, the vaginal microbiota undergoes dynamic changes that are important for a successful gestation. This review summarizes the implications of the cervical mucus plug microenvironment and its profound impact on reproductive health. Further, the symbiotic relationship between the vaginal microbiome and the cervical mucus plug is highlighted, with a special emphasis on how this natural barrier serves as a guardian against ascending infections. Understanding this complex host-microbes interplay could pave the way for innovative approaches to improve women's reproductive health and fertility.
Collapse
Affiliation(s)
- Susana Ruiz-Durán
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Celia M Tenorio
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Irene Vico-Zúñiga
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Sebastián Manzanares
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Alberto Puertas-Prieto
- Department of Obstetrics and Gynaecology, Virgen de las Nieves University Hospital, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Signe Altmäe
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Vargas
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| |
Collapse
|