1
|
Auxier B, Debets AJM, Stanford FA, Rhodes J, Becker FM, Reyes Marquez F, Nijland R, Dyer PS, Fisher MC, van den Heuvel J, Snelders E. The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers. PLoS Biol 2023; 21:e3002278. [PMID: 37708139 PMCID: PMC10501685 DOI: 10.1371/journal.pbio.3002278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.
Collapse
Affiliation(s)
- Ben Auxier
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | | | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Frank M. Becker
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | - Reindert Nijland
- Marine Animal Ecology, Wageningen University, Wageningen, the Netherlands
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | | | - Eveline Snelders
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| |
Collapse
|
2
|
Shelton JMG, Rhodes J, Uzzell CB, Hemmings S, Brackin AP, Sewell TR, Alghamdi A, Dyer PS, Fraser M, Borman AM, Johnson EM, Piel FB, Singer AC, Fisher MC. Citizen science reveals landscape-scale exposures to multiazole-resistant Aspergillus fumigatus bioaerosols. SCIENCE ADVANCES 2023; 9:eadh8839. [PMID: 37478175 PMCID: PMC10361594 DOI: 10.1126/sciadv.adh8839] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Using a citizen science approach, we identify a country-wide exposure to aerosolized spores of a human fungal pathogen, Aspergillus fumigatus, that has acquired resistance to the agricultural fungicide tebuconazole and first-line azole clinical antifungal drugs. Genomic analysis shows no distinction between resistant genotypes found in the environment and in patients, indicating that at least 40% of azole-resistant A. fumigatus infections are acquired from environmental exposures. Hotspots and coldspots of aerosolized azole-resistant spores were not stable between seasonal sampling periods. This suggests a high degree of atmospheric mixing resulting in an estimated per capita cumulative annual exposure of 21 days (±2.6). Because of the ubiquity of this measured exposure, it is imperative that we determine sources of azole-resistant A. fumigatus to reduce treatment failure in patients with aspergillosis.
Collapse
Affiliation(s)
- Jennifer M. G. Shelton
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
| | - Johanna Rhodes
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christopher B. Uzzell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Samuel Hemmings
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Amelie P. Brackin
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Thomas R. Sewell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Asmaa Alghamdi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Faculty of Science, Department of Biology, Al-Baha University, Al-Baha, Saudi Arabia
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Mark Fraser
- UK National Mycology Reference Laboratory, National Infections Service, Public Health England, Science Quarter, Southmead Hospital, Bristol, UK
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, National Infections Service, Public Health England, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elizabeth M. Johnson
- UK National Mycology Reference Laboratory, National Infections Service, Public Health England, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Frédéric B. Piel
- NIHR HPRU in Environmental Exposures and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | | | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
3
|
Gao Y, Zhu J, Zhai H, Xu K, Zhu X, Wu H, Zhang W, Wu S, Chen X, Xia Z. Dysfunction of an Anaphase-Promoting Complex Subunit 8 Homolog Leads to Super-Short Petioles and Enlarged Petiole Angles in Soybean. Int J Mol Sci 2023; 24:11024. [PMID: 37446203 DOI: 10.3390/ijms241311024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Plant height, petiole length, and the angle of the leaf petiole and branch angles are crucial traits determining plant architecture and yield in soybean (Glycine max L.). Here, we characterized a soybean mutant with super-short petioles (SSP) and enlarged petiole angles (named Gmssp) through phenotypic observation, anatomical structure analysis, and bulk sequencing analysis. To identify the gene responsible for the Gmssp mutant phenotype, we established a pipeline involving bulk sequencing, variant calling, functional annotation by SnpEFF (v4.0e) software, and Integrative Genomics Viewer analysis, and we initially identified Glyma.11G026400, encoding a homolog of Anaphase-promoting complex subunit 8 (APC8). Another mutant, t7, with a large deletion of many genes including Glyma.11G026400, has super-short petioles and an enlarged petiole angle, similar to the Gmssp phenotype. Characterization of the t7 mutant together with quantitative trait locus mapping and allelic variation analysis confirmed Glyma.11G026400 as the gene involved in the Gmssp phenotype. In Gmssp, a 4 bp deletion in Glyma.11G026400 leads to a 380 aa truncated protein due to a premature stop codon. The dysfunction or absence of Glyma.11G026400 caused severe defects in morphology, anatomical structure, and physiological traits. Transcriptome analysis and weighted gene co-expression network analysis revealed multiple pathways likely involved in these phenotypes, including ubiquitin-mediated proteolysis and gibberellin-mediated pathways. Our results demonstrate that dysfunction of Glyma.11G026400 leads to diverse functional consequences in different tissues, indicating that this APC8 homolog plays key roles in cell differentiation and elongation in a tissue-specific manner. Deciphering the molecular control of petiole length and angle enriches our knowledge of the molecular network regulating plant architecture in soybean and should facilitate the breeding of high-yielding soybean cultivars with compact plant architecture.
Collapse
Affiliation(s)
- Yi Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlong Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Kun Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Wenjing Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| | - Shihao Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
4
|
Kück U, Bennett RJ, Wang L, Dyer PS. Editorial: Sexual and Parasexual Reproduction of Human Fungal Pathogens. Front Cell Infect Microbiol 2022; 12:934267. [PMID: 35837471 PMCID: PMC9274299 DOI: 10.3389/fcimb.2022.934267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
- *Correspondence: Ulrich Kück,
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|