1
|
Deepak D, De UK, Sarkar TK, Katoch S, John JK, Sarkar VK. Strategic administration of antioxidant multiminerals and vitamins to transitional buffaloes augments antioxidant and udder defense mechanisms in early lactation. Res Vet Sci 2024; 172:105253. [PMID: 38579632 DOI: 10.1016/j.rvsc.2024.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The aim of the study was to examine the effects of repeated administrations of antioxidant multiminerals and vitamins in transition buffaloes on udder defense mechanism, antioxidant activity and occurrence of intramammary infection (IMI) in early lactation period. Forty clinically healthy pregnant buffaloes were enrolled 45 days before expected date of calving and randomly allocated into five different supplementation groups (n = 8): only basal ration (control), vitamin E and selenium (VES), multiminerals (MM), ascorbic acid (AA) and chromium (Cr) picolinate in basal diet. The udder defense mechanism was monitored by measuring phagocytic activity (PA), myeloperoxidase (MPO) and nitric oxide (NO) productions in milk leukocytes, antioxidant activity was evaluated by measuring total antioxidant capacity (TAC) in plasma and occurrence of IMI was assessed by milk cytology, bacterial count in milk and visible clinical signs of udder until day 28 post-calving. The results showed that the VES and MM supplementations exhibited significantly higher PA, MPO and NO productions of milk leukocytes till first week of lactation whereas, elevated mean TAC in plasma was maintained from day -7 to 1 of calving in MM supplementation group as compared to control group. Statistically, no significant difference in occurrences of subclinical or clinical IMI was noted across the groups until four weeks of lactation. Taken together, it is concluded that repeated administrations of VES and MM to transition buffaloes could be an effective strategy to maintain good udder health by augmenting milk leukocyte functions and antioxidant status and preventing incidence of IMI in early lactation.
Collapse
Affiliation(s)
- D Deepak
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India; Department of Veterinary Medicine, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut 250 110, Uttar Pradesh, India
| | - U K De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India.
| | - T K Sarkar
- Department of Veterinary Medicine, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut 250 110, Uttar Pradesh, India
| | - S Katoch
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut 250 110, Uttar Pradesh, India
| | - J K John
- Department of Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut 250 110, Uttar Pradesh, India
| | - V K Sarkar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| |
Collapse
|
2
|
Uribe-Querol E, Rosales C. Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba. Microorganisms 2024; 12:827. [PMID: 38674770 PMCID: PMC11051968 DOI: 10.3390/microorganisms12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Zhang J, Cheng D, Zhang H, Liu Z, Gao M, Wei L, Yan F, Li C, Wang L, Dong G, Wang C, Zhao M, Zhu Y, Xiong H. Interleukin 28A aggravates Con A-induced acute liver injury by promoting the recruitment of M1 macrophages. FASEB J 2024; 38:e23443. [PMID: 38265281 DOI: 10.1096/fj.202301454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Immune-mediated acute hepatic injury is characterized by the destruction of a large number of hepatocytes and severe liver function damage. Interleukin-28A (IL-28A), a member of the IL-10 family, is notable for its antiviral properties. However, despite advances in our understanding of IL-28A, its role in immune-mediated acute injury remains unclear. The present study investigated the role of IL-28A in concanavalin A (Con A)-induced acute immune liver injury. After Con A injection in mice, IL-28A level significantly increased. IL-28A deficiency was found to protect mice from acute liver injury, prolong survival time, and reduce serum aspartate aminotransferase and alanine aminotransferase levels. In contrast, recombinant IL-28A aggravated liver injury in mice. The proportion of activated M1 macrophages was significantly lower in the IL-28A-deficiency group than in the wild-type mouse group. In adoptive transfer experiments, M1 macrophages from WT could exacerbate mice acute liver injury symptoms in the IL-28A deficiency group. Furthermore, the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-12, IL-6, and IL-1β, by M1 macrophages decreased significantly in the IL-28A-deficiency group. Western blotting demonstrated that IL-28A deficiency could limit M1 macrophage polarization by modulating the nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and interferon regulatory factor (IRF) signaling pathways. In summary, IL-28A deletion plays an important protective role in the Con A-induced acute liver injury model and IL-28A deficiency inhibits the activation of M1 macrophages by inhibiting the NF-κB, MAPK, and IRF signaling pathways. These results provide a potential new target for the treatment of immune-related hepatic injury.
Collapse
Affiliation(s)
- Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- School of Basic Medicine, Shandong First Medical University, Jinan, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, China
| | - Li Wei
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yuanbo Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
4
|
Roy M, Chakraborty S, Kumar Srivastava S, Kaushik S, Jyoti A, Kumar Srivastava V. Entamoeba histolytica induced NETosis and the dual role of NETs in amoebiasis. Int Immunopharmacol 2023; 118:110100. [PMID: 37011501 DOI: 10.1016/j.intimp.2023.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Entamoeba histolytica (Eh), a microaerophilic parasite, causes deadly enteric infections that result in Amoebiasis. Every year, the count of invasive infections reaches 50 million approximately and 40,000 to 1,00,000 deaths occurring due to amoebiasis are reported globally. Profound inflammation is the hallmark of severe amoebiasis which is facilitated by immune first defenders, neutrophils. Due to size incompatibility, neutrophils are unable to phagocytose Eh and thus, came up with the miraculous antiparasitic mechanism of neutrophil extracellular traps (NETs). This review provides an in-depth analysis of NETosis induced by Eh including the antigens involved in the recognition of Eh and the biochemistry of NET formation. Additionally, it underscores its novelty by describing the dual role of NETs in amoebiasis where it acts as a double-edged sword in terms of both clearing and exacerbating amoebiasis. It also provides a comprehensive account of the virulence factors discovered to date that are implicated directly and indirectly in the pathophysiology of Eh infections through the lens of NETs and can be interesting drug targets.
Collapse
Affiliation(s)
- Mrinalini Roy
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Shreya Chakraborty
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | | | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, NH-95, Chandigarh-Ludhiana Highway, Mohali, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India.
| |
Collapse
|
5
|
AlSaleh A, Shahid M, Farid E, Bindayna K. The Effect of Ascorbic Acid and Nicotinamide on Panton-Valentine Leukocidin Cytotoxicity: An Ex Vivo Study. Toxins (Basel) 2023; 15:38. [PMID: 36668859 PMCID: PMC9865643 DOI: 10.3390/toxins15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Panton−Valentine Leukocidin sustains a strong cytotoxic activity, targeting immune cells and, consequently, perforating the plasma membrane and inducing cell death. The present study is aimed to examine the individual effect of ascorbic acid and nicotinamide on PVL cytotoxicity ex vivo, as well as their effect on granulocytes viability when treated with PVL. Materials and Methods: The PVL cytotoxicity assay was performed in triplicates using the commercial Cytotoxicity Detection Kit PLUS (LDH). LDH release was measured to determine cell damage and cell viability was measured via flow cytometry. Results and discussion: A clear reduction in PVL cytotoxicity was demonstrated (p < 0.001). Treatment with ascorbic acid at 5 mg/mL has shown a 3-fold reduction in PVL cytotoxicity; likewise, nicotinamide illustrated a 4-fold reduction in PVL cytotoxicity. Moreover, granulocytes’ viability after PVL treatment was maintained when incubated with 5 mg/mL of ascorbic acid and nicotinamide. Conclusions: our findings illustrated that ascorbic acid and nicotinamide exhibit an inhibitory effect on PVL cytotoxicity and promote cell viability, as the cytotoxic effect of the toxin is postulated to be neutralized by antioxidant incubation. Further investigations are needed to assess whether these antioxidants may be viable options in PVL cytotoxicity attenuation in PVL-associated diseases.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | | | | | | |
Collapse
|