1
|
Efremova I, Alieva A, Maslennikov R, Poluektova E, Zharkova M, Kudryavtseva A, Krasnov G, Zharikov Y, Nerestyuk Y, Karchevskaya A, Ivashkin V. Akkermansia muciniphila is associated with normal muscle mass and Eggerthella is related with sarcopenia in cirrhosis. Front Nutr 2024; 11:1438897. [PMID: 39539377 PMCID: PMC11557486 DOI: 10.3389/fnut.2024.1438897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background Sarcopenia and gut dysbiosis are common in cirrhosis. The aim is to study the correlations between the gut microbiota taxa and muscle mass level in cirrhosis. Methods The study included 40 cirrhosis patients including 18 patients with sarcopenia. The gut microbiota composition was assessed using amplicon sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene. The skeletal muscle mass, subcutaneous and visceral fat levels were assessed with abdominal computed tomography as skeletal muscle, subcutaneous and visceral fat indices (SMI, SFI and VFI). Results Patients with sarcopenia had more relative abundance (RA) of Agathobacter, Anaerostipes, Butyricicoccus, Dorea, Eggerthella, Microbacteriaceae, Veillonella and less RA of Akkermansiaceae, Akkermansia muciniphila, Verrucomicrobiae and Bilophila compared to patients with normal muscle mass. SMI directly correlated with RA of Akkermansia, Alistipes indistinctus, Anaerotruncus, Atopobiaceae, Bacteroides clarus, Bacteroides salyersiae, Barnesiellaceae, Bilophila wadsworthia, Pseudomonadota, Olsenella, and Parabacteroides distasonis, and negatively correlated with RA of Anaerostipes and Eggerthella. Sarcopenia was detected in 20.0% patients whose gut microbiota had Akkermansia but not Eggerthella, and in all the patients, whose gut microbiota had Eggerthella but not Akkermansia. The Akkermansia and Eggerthella abundances were independent determinants of SMI. RA of Akkermansia, Akkermansia muciniphila, Akkermansiaceae, Bacteroides salyersiae, Barnesiella, Bilophila, Desulfobacterota, Verrucomicrobiota and other taxa correlated positively and RA of Anaerovoracaceae, Elusimicrobiaceae, Elusimicrobium, Kiritimatiellae, Spirochaetota, and other taxa correlated negatively with the SFI. RA of Alistripes, Romboutsia, Succinivibrio, and Succinivibrionaceae correlated positively and RA of Bacteroides thetaiotaomicron correlated negatively with VFI. Conclusion The muscle mass level in cirrhosis correlates with the abundance of several gut microbiota taxa, of which Akkermansia and Eggerthella seems to be the most important.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Yury Zharikov
- Department of Anatomy, Sechenov University, Moscow, Russia
| | | | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| |
Collapse
|
2
|
Krizanac M, Štancl P, Mass-Sanchez PB, Karlić R, Moeckel D, Lammers T, Asimakopoulos A, Weiskirchen R. The influence of perilipin 5 deficiency on gut microbiome profiles in murine metabolic dysfunction-associated fatty liver disease (MAFLD) and MAFLD-hepatocellular carcinoma. Front Cell Infect Microbiol 2024; 14:1443654. [PMID: 39469452 PMCID: PMC11513398 DOI: 10.3389/fcimb.2024.1443654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as the leading cause of hepatocellular carcinoma (HCC) worldwide. Over the years, Perilipin 5 (PLIN5) has been recognized as a key regulator of both MAFLD and HCC development. In our previous studies we demonstrated that deficiency in Plin5 reduces the severity of MAFLD and HCC in mice. Interestingly, it has been established that patients with MAFLD and HCC exhibit various changes in their gut microbiome profiles. The gut microbiome itself has been shown to play a role in modulating carcinogenesis and the immune response against cancer. Methods Therefore, we conducted a study to investigate the alterations in fecal microbiome composition in wild type (WT) and Plin5-deficient (Plin5 -/-) mice models of MAFLD and MAFLD-induced HCC (MAFLD-HCC). We utilized 16S rRNA gene sequencing analysis to profile the composition of gut bacteria in fecal samples. Results Notably, we discovered that the absence of Plin5 alone is already associated with changes in gut microbiota composition. Moreover, feeding the mice a Western diet (WD) resulted in additional microbial alterations. Interestingly, Plin5 -/- animals exhibited an enrichment of the beneficial taxa Lactobacillus in both animal models. Discussion Our findings identify Plin5 as a major regulator of gut microbiota during the development of MAFLD and MAFLD-HCC.
Collapse
Affiliation(s)
- Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Diana Moeckel
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
3
|
Lin J, Zhang R, Liu H, Zhu Y, Dong N, Qu Q, Bi H, Zhang L, Luo O, Sun L, Ma M, You J. Multi-omics analysis of the biological mechanism of the pathogenesis of non-alcoholic fatty liver disease. Front Microbiol 2024; 15:1379064. [PMID: 39132138 PMCID: PMC11310135 DOI: 10.3389/fmicb.2024.1379064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a type of liver metabolic syndrome. Employing multi-omics analyses encompassing the microbiome, metabolome and transcriptome is crucial for comprehensively elucidating the biological processes underlying NAFLD. Methods Hepatic tissue, blood and fecal samples were obtained from 9 NAFLD model mice and 8 normal control mice. Total fecal microbiota DNA was extracted, and 16S rRNA was amplified, to analyze alterations in the gut microbiota (GM) induced by NAFLD. Subsequently, diagnostic strains for NAFLD were screened, and their functional aspects were examined. Differential metabolites and differentially expressed genes were also screened, followed by enrichment analysis. Correlations between the differential microbiota and metabolites, as well as between the DEGs and differential metabolites were studied. A collinear network involving key genes-, microbiota-and metabolites was constructed. Results Ileibacterium and Ruminococcaceae, both belonging to Firmicutes; Olsenella, Duncaniella and Paramuribaculum from Bacteroidota; and Bifidobacterium, Coriobacteriaceae_UCG_002 and Olsenella from Actinobacteriota were identified as characteristic strains associated with NAFLD. Additionally, differentially expressed metabolites were predominantly enriched in tryptophan, linoleic acid and methylhistidine metabolism pathways. The functions of 2,510 differentially expressed genes were found to be associated with disease occurrence. Furthermore, a network comprising 8 key strains, 14 key genes and 83 key metabolites was constructed. Conclusion Through this study, we conducted a comprehensive analysis of NAFLD alterations, exploring the gut microbiota, genes and metabolites of the results offer insights into the speculated biological mechanisms underlying NAFLD.
Collapse
Affiliation(s)
- Jie Lin
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruyi Zhang
- Department of Infectious Diseases and Hepatology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Huaie Liu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhen Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ningling Dong
- Department of Health Examination, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiu Qu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Bi
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihua Zhang
- Department of General Practice, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ou Luo
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengjuan Ma
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing You
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Tang R, Liu R, Zha H, Cheng Y, Ling Z, Li L. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci 2024; 24:2300016. [PMID: 38708414 PMCID: PMC11065334 DOI: 10.1002/elsc.202300016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a growing global health concern that can lead to liver disease and cancer. It is characterized by an excessive accumulation of fat in the liver, unrelated to excessive alcohol consumption. Studies indicate that the gut microbiota-host crosstalk may play a causal role in NAFLD pathogenesis, with epigenetic modification serving as a key mechanism for regulating this interaction. In this review, we explore how the interplay between gut microbiota and the host epigenome impacts the development of NAFLD. Specifically, we discuss how gut microbiota-derived factors, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs), can modulate the DNA methylation and histone acetylation of genes associated with NAFLD, subsequently affecting lipid metabolism and immune homeostasis. Although the current literature suggests a link between gut microbiota and NAFLD development, our understanding of the molecular mechanisms and signaling pathways underlying this crosstalk remains limited. Therefore, more comprehensive epigenomic and multi-omic studies, including broader clinical and animal experiments, are needed to further explore the mechanisms linking the gut microbiota to NAFLD-associated genes. These studies are anticipated to improve microbial markers based on epigenetic strategies and provide novel insights into the pathogenesis of NAFLD, ultimately addressing a significant unmet clinical need.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Rongrong Liu
- Center of Pediatric Hematology‐oncologyPediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang ProvinceNational Clinical Research Center for Child HealthChildren's HospitalZhejiang University School of MedicineHangzhouChina
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yiwen Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
5
|
Perlin CM, Longo L, Thoen RU, Uribe-Cruz C, Álvares-DA-Silva MR. COMPARISON OF GUT MICROBIOTA IN ALCOHOLIC AND METABOLIC-DYSFUNCION ASSOCIATED STEATOTIC LIVER DISEASE IN ANIMAL MODELS. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e23100. [PMID: 38511793 DOI: 10.1590/s0004-2803.24612023-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) and metabolic-dysfunction associated steatotic liver disease (MASLD) are common, and gut microbiota (GM) is involved with both. Here we compared GM composition in animal models of MASLD and ALD to assess whether there are specific patterns for each disease. METHODS MASLD model- adult male Sprague Dawley rats, randomized into two groups: MASLD-control (n=10) fed a standard diet; MASLD-group (n=10) fed a high-fat-choline-deficient diet for 16 weeks. ALD model- adult male Wistar rats randomized: ALD-control (n=8) fed a standard diet and water+0.05% saccharin, ALD groups fed with sunflower seed and 10% ethanol+0.05% saccharin for 4 or 8 weeks (ALC4, n=8; ALC8, n=8). ALC4/8 on the last day received alcoholic binge (5g/kg of ethanol). Afterwards, animals were euthanized, and feces were collected for GM analysis. RESULTS Both experimental models induced typical histopathological features of the diseases. Alpha diversity was lower in MASLD compared with ALD (p<0.001), and structural pattern was different between them (P<0.001). Bacteroidetes (55.7%), Firmicutes (40.6%), and Proteobacteria (1.4%) were the most prevalent phyla in all samples, although differentially abundant among groups. ALC8 had a greater abundance of the phyla Cyanobacteria (5.3%) and Verrucomicrobiota (3.2%) in relation to the others. Differential abundance analysis identified Lactobacillaceae_unclassified, Lachnospiraceae_NK4A136_group, and Turicibacter associated with ALC4 and the Clostridia_UCG_014_ge and Gastranaerophilales_ge genera to ALC8. CONCLUSION In this study, we demonstrated that the structural pattern of the GM differs significantly between MASLD and ALD models. Studies are needed to characterize the microbiota and metabolome in both clinical conditions to find new therapeutic strategies. BACKGROUND •Changes in the composition of the intestinal microbiota are related to the development of alcoholic liver disease and metabolic-dysfunction associated steatotic liver disease. BACKGROUND •The diversity of the intestinal microbiota was lower in animals with MASLD compared to ALD. BACKGROUND •The structural pattern of the intestinal microbiota was significantly different among the experimental groups. BACKGROUND •Studies are needed to characterize the composition of the intestinal microbiota and metabolome to find new therapeutic strategies.
Collapse
Affiliation(s)
- Cássio Marques Perlin
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Laboratório Experimental de Hepatologia e Gastroenterologia, Centro de Pesquisa Experimental, Porto Alegre, RS, Brasil
| | - Larisse Longo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Laboratório Experimental de Hepatologia e Gastroenterologia, Centro de Pesquisa Experimental, Porto Alegre, RS, Brasil
| | - Rutiane Ullmann Thoen
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Laboratório Experimental de Hepatologia e Gastroenterologia, Centro de Pesquisa Experimental, Porto Alegre, RS, Brasil
| | - Carolina Uribe-Cruz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Laboratório Experimental de Hepatologia e Gastroenterologia, Centro de Pesquisa Experimental, Porto Alegre, RS, Brasil
- Universidade Católica de las Misiones, Posadas - 3300, Misiones, Argentina
| | - Mário Reis Álvares-DA-Silva
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Laboratório Experimental de Hepatologia e Gastroenterologia, Centro de Pesquisa Experimental, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Divisão de Gastroenterologia, Porto Alegre, RS, Brasil
- Pesquisador do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasil
| |
Collapse
|
6
|
Wei J, Luo J, Yang F, Feng X, Zeng M, Dai W, Pan X, Yang Y, Li Y, Duan Y, Xiao X, Ye P, Yao Z, Liu Y, Huang Z, Zhang J, Zhong Y, Xu N, Luo M. Cultivated Enterococcus faecium B6 from children with obesity promotes nonalcoholic fatty liver disease by the bioactive metabolite tyramine. Gut Microbes 2024; 16:2351620. [PMID: 38738766 PMCID: PMC11093035 DOI: 10.1080/19490976.2024.2351620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Xiangling Feng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ming Zeng
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Wen Dai
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiongfeng Pan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Yamei Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, Hunan, China
| | - Yamei Duan
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Ye
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhenzhen Yao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yixu Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Zhihang Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yan Zhong
- Institute of Children Health, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Ningan Xu
- Institute of Children Health, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Banerjee G, Papri SR, Satapathy SK, Banerjee P. Akkermansia muciniphila - A Potential Next-generation Probiotic for Non-alcoholic Fatty Liver Disease. Curr Pharm Biotechnol 2024; 25:426-433. [PMID: 37724669 DOI: 10.2174/1389201025666230915103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions, and its growing prevalence is a serious concern worldwide, especially in Western countries. Researchers have pointed out several genetic mutations associated with NAFLD; however, the imbalance of the gut microbial community also plays a critical role in the progression of NAFLD. Due to the lack of approved medicine, probiotics gain special attention in controlling metabolic disorders like NAFLD. Among these probiotics, Akkermansia muciniphila (a member of natural gut microflora) is considered one of the most efficient and important bacterium in maintaining gut health, energy homeostasis, and lipid metabolism. In this perspective, we discussed the probable molecular mechanism of A. muciniphila in controlling the progression of NAFLD and restoring liver health. The therapeutic potential of A. muciniphila in NAFLD has been tested primarily on animal models, and thus, more randomized human trials should be conducted to prove its efficacy.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Suraya R Papri
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Sanjaya K Satapathy
- 2Department of Medicine, Northwell Health Center for Liver Disease & Transplantation, North Shore, University Hospital/Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
8
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11020468. [PMID: 36831004 PMCID: PMC9953066 DOI: 10.3390/biomedicines11020468] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the incidence of non-viral hepatocellular carcinoma (HCC) has increased dramatically, which is probably related to the increased prevalence of metabolic syndrome, together with obesity and type 2 diabetes mellitus (T2DM). Several epidemiological studies have established the association between T2DM and the incidence of HCC and have demonstrated the role of diabetes mellitus as an independent risk factor for the development of HCC. The pathophysiological mechanisms underlying the development of Non-alcoholic fatty liver disease (NAFLD) and its progression to Non-alcoholic steatohepatitis (NASH) and cirrhosis are various and involve pro-inflammatory agents, oxidative stress, apoptosis, adipokines, JNK-1 activation, increased IGF-1 activity, immunomodulation, and alteration of the gut microbiota. Moreover, these mechanisms are thought to play a significant role in the development of NAFLD-related hepatocellular carcinoma. Early diagnosis and the timely correction of risk factors are essential to prevent the onset of liver fibrosis and HCC. The purpose of this review is to summarize the current evidence on the association among obesity, NASH/NAFLD, T2DM, and HCC, with an emphasis on clinical impact. In addition, we will examine the main mechanisms underlying this complex relationship, and the promising strategies that have recently emerged for these diseases' treatments.
Collapse
|
10
|
Zhu LR, Li SS, Zheng WQ, Ni WJ, Cai M, Liu HP. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy. Front Immunol 2023; 14:1086078. [PMID: 36817459 PMCID: PMC9933143 DOI: 10.3389/fimmu.2023.1086078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota not only constitutes intestinal microenvironment homeostasis and human health but also exerts indispensable roles in the occurrence and progression of multiple liver diseases, including alcohol-related liver disease, nonalcoholic fatty liver disease, autoimmune liver disease and liver cancer. Given the therapeutic status of these diseases, their prevention and early therapy are crucial, and the detailed mechanism of gut microbiota in liver disease urgently needs to be explored. Meanwhile, multiple studies have shown that various traditional Chinese medicines, such as Si Miao Formula, Jiangzhi Granules, Liushen Capsules, Chaihu-Shugan Power, Cassiae Semen and Gynostemma, as well as some natural products, including Costunolide, Coprinus comatus polysaccharide, Antarctic krill oil, Oridonin and Berberine, can repair liver injury, improve fatty liver, regulate liver immunity, and even inhibit liver cancer through multiple targets, links, and pathways. Intriguingly, the aforementioned effects demonstrated by these traditional Chinese medicines and natural products have been shown to be closely related to the gut microbiota, directly driving the strategy of traditional Chinese medicines and natural products to regulate the gut microbiota as one of the breakthroughs in the treatment of liver diseases. Based on this, this review comprehensively summarizes and discusses the characteristics, functions and potential mechanisms of these medicines targeting gut microbiota during liver disease treatment. Research on the potential effects on gut microbiota and the regulatory mechanisms of traditional Chinese medicine and natural products provides novel insights and significant references for developing liver disease treatment strategies. In parallel, such explorations will enhance the comprehension of traditional Chinese medicine and natural products modulating gut microbiota during disease treatment, thus facilitating their clinical investigation and application.
Collapse
Affiliation(s)
- Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Shan-Shan Li
- Department of Scientific Research and Education, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Wan-Qun Zheng
- Department of Chinese Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ming Cai
- Department of Pharmacy, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.,Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Hai-Peng Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| |
Collapse
|
11
|
Deng S, Cai K, Pei C, Zhang X, Xiao X, Chen Y, Chen Y, Liang R, Chen Y, Li P, Xie Z, Liao Q. 16S rRNA and Metagenomics Combined with UPLC-Q/TOF-MS Metabolomics Analysis Reveals the Potential Mechanism of Radix Astragali Against Hyperuricemia in Mice. Drug Des Devel Ther 2023; 17:1371-1386. [PMID: 37181826 PMCID: PMC10171225 DOI: 10.2147/dddt.s407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose This study aimed to investigate the underlying treatment mechanism of Radix Astragali (RA) in hyperuricemia from the perspective of microbiota and metabolomics. Methods We used potassium oxyazinate (PO) to induce hyperuricemia mice, and we determined serum alanine aminotransferase/aspartate aminotransferase (ALT/AST), xanthine oxidase (XOD), creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN) levels, liver XOD levels and assessed the kidney tissue histopathology. The therapeutic mechanism of RA in hyperuricemic mice was studied by 16S rRNA, metagenomic sequencing and metabolomics. Results Our research showed that RA has therapeutic effect in hyperuricemia mice, such as slow the weight loss, repair kidney damage, and downregulate serum UA, XOD, CRE, ALT/AST, BUN, and liver XOD levels. RA restored the disturbance structure of the microbiota in hyperuricemia mice by increasing the relative abundances of beneficial bacteria (Lactobacillaceae and Lactobacillus murine) but decreasing the relative abundances of pathogenic bacteria (Prevotellaceae, Rikenellaceae and Bacteroidaceae). Meanwhile, we found that RA directly regulated the metabolic pathway (such as linoleic acid metabolism and glycerophospholipid metabolism) and indirectly regulated bile acid metabolism by mediating microbiota to ameliorate metabolic disorders. Subsequently, there was a robust correlation between specific microbiota, metabolites and the disease index. Conclusion The ability of RA to protect mice against hyperuricemia is strongly linked to the microbiome-metabolite axis, which would provide evidence for RA as a medicine to prevent or treat hyperuricemia.
Collapse
Affiliation(s)
- Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- Zhiyong Xie, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China, Tel/Fax +86 075523260207, Email
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Correspondence: Qiongfeng Liao, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China, Tel/Fax +86 02039358081, Email
| |
Collapse
|
12
|
Yan G, Li S, Wen Y, Luo Y, Huang J, Chen B, Lv S, Chen L, He L, He M, Yang Q, Yu Z, Xiao W, Tang Y, Li W, Han J, Zhao F, Yu S, Kong F, Abbasi B, Yin H, Gu C. Characteristics of intestinal microbiota in C57BL/6 mice with non-alcoholic fatty liver induced by high-fat diet. Front Microbiol 2022; 13:1051200. [PMID: 36620001 PMCID: PMC9813237 DOI: 10.3389/fmicb.2022.1051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction As a representation of the gut microbiota, fecal and cecal samples are most often used in human and animal studies, including in non-alcoholic fatty liver disease (NAFLD) research. However, due to the regional structure and function of intestinal microbiota, whether it is representative to use cecal or fecal contents to study intestinal microbiota in the study of NAFLD remains to be shown. Methods The NAFLD mouse model was established by high-fat diet induction, and the contents of the jejunum, ileum, cecum, and colon (formed fecal balls) were collected for 16S rRNA gene analysis. Results Compared with normal mice, the diversity and the relative abundance of major bacteria and functional genes of the ileum, cecum and colon were significantly changed, but not in the jejunum. In NAFLD mice, the variation characteristics of microbiota in the cecum and colon (feces) were similar. However, the variation characteristics of intestinal microbiota in the ileum and large intestine segments (cecum and colon) were quite different. Discussion Therefore, the study results of cecal and colonic (fecal) microbiota cannot completely represent the results of jejunal and ileal microbiota.
Collapse
Affiliation(s)
- Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
| | - Shuaibing Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lang Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yong Tang
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhong Han
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Fangfang Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Kong
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Benazir Abbasi
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Hongmei Yin
- College of Animal Science, Xichang University, Xichang, China,*Correspondence: Hongmei Yin,
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Congwei Gu,
| |
Collapse
|
13
|
Lv S, Zhang Z, Su X, Li W, Wang X, Pan B, Li H, Zhang H, Wang Y. Qingrequzhuo capsule alleviated methionine and choline deficient diet-induced nonalcoholic steatohepatitis in mice through regulating gut microbiota, enhancing gut tight junction and inhibiting the activation of TLR4/NF-κB signaling pathway. Front Endocrinol (Lausanne) 2022; 13:1106875. [PMID: 36743916 PMCID: PMC9892721 DOI: 10.3389/fendo.2022.1106875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Qingrequzhuo capsule (QRQZ), composed of Morus alba L., Coptis chinensis Franch., Anemarrhena asphodeloides Bunge, Alisma plantago-aquatica subsp. orientale (Sam.) Sam., Citrus × aurantium L., Carthamus tinctorius L., Rheum palmatum L., Smilax glabra Roxb., Dioscorea oppositifolia L., Cyathula officinalis K.C.Kuan, has been used to treat nonalcoholic steatohepatitis (NASH) in clinic. However, the mechanism of QRQZ on NASH remains unclear. Recent studies have found that the dysfunction of gut microbiota could impair the gut barrier and induce the activation of TLR4/NF-kB signaling pathway, and further contribute to the inflammatory response in NASH. Modulating the gut microbiota to reduce inflammation could prevent the progression of NASH. In this study, a mouse model of NASH was generated by methionine and choline deficient diet (MCD) and treated with QRQZ. First, we evaluated the therapeutic effects of QRQZ on liver injury and inflammation in the NASH mice. Second, the changes in the gut microbiota diversity and abundance in each group of mice were measured through 16S rRNA sequencing. Finally, the effects of QRQZ on gut mucosal permeability, endotoxemia, and liver TLR4/NF-kB signaling pathway levels were examined. Our results showed that QRQZ significantly reduced the lipid accumulation in liver and the liver injury in NASH mice. In addition, QRQZ treatment decreased the levels of inflammatory cytokines in liver. 16S rRNA sequencing showed that QRQZ affected the diversity of gut microbiota and a f f e c t e d t h e r e l a t i v e a b u n d a n c e s o f D u b o s i e l l a , Lachnospiraceae_NK4A136_group, and Blautiain NASH mice. Besides, QRQZ could increase the expression of tight junction proteins (zonula occludens-1 and occludin) in gut and decrease the lipopolysaccharide (LPS) level in serum. Western blot results also showed that QRQZ treatment decreased the protein expression ofTLR4, MyD88 and the phosphorylation of IkB and NF-kBp65 and qPCR results showed that QRQZ treatment down-regulated the gene expression of interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a in liver. In conclusion, our study demonstrated that QRQZ could reduce the lipid accumulation and inflammatory response in NASH model mice. The mechanisms of QRQZ on NASH were associated with modulating gut microbiota, thereby inducing the tight junction of gut barrier, reducing the endotoxemia and inhibiting the activation of TLR4/NFkB signaling pathway in liver.
Collapse
Affiliation(s)
- Shuquan Lv
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Zhongyong Zhang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiuhai Su
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Wendong Li
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Xiaoyun Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
| | - Baochao Pan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hanzhou Li
- Graduate School, Chengde Medical University, Chengde, China
| | - Hui Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuansong Wang
- Department of Endocrinology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei Province Affiliated to Hebei University of Chinese Medicine, Cangzhou, China
- *Correspondence: Yuansong Wang,
| |
Collapse
|