1
|
Samaddar S, Rolandelli A, O'Neal AJ, Laukaitis-Yousey HJ, Marnin L, Singh N, Wang X, Butler LR, Rangghran P, Kitsou C, Cabrera Paz FE, Valencia L, R Ferraz C, Munderloh UG, Khoo B, Cull B, Rosche KL, Shaw DK, Oliver J, Narasimhan S, Fikrig E, Pal U, Fiskum GM, Polster BM, Pedra JHF. Bacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection. Nat Microbiol 2024; 9:2278-2291. [PMID: 38997520 DOI: 10.1038/s41564-024-01756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Arthropod-borne pathogens are responsible for hundreds of millions of infections in humans each year. The blacklegged tick, Ixodes scapularis, is the predominant arthropod vector in the United States and is responsible for transmitting several human pathogens, including the Lyme disease spirochete Borrelia burgdorferi and the obligate intracellular rickettsial bacterium Anaplasma phagocytophilum, which causes human granulocytic anaplasmosis. However, tick metabolic response to microbes and whether metabolite allocation occurs upon infection remain unknown. Here we investigated metabolic reprogramming in the tick ectoparasite I. scapularis and determined that the rickettsial bacterium A. phagocytophilum and the spirochete B. burgdorferi induced glycolysis in tick cells. Surprisingly, the endosymbiont Rickettsia buchneri had a minimal effect on bioenergetics. An unbiased metabolomics approach following A. phagocytophilum infection of tick cells showed alterations in carbohydrate, lipid, nucleotide and protein metabolism, including elevated levels of the pleiotropic metabolite β-aminoisobutyric acid. We manipulated the expression of genes associated with β-aminoisobutyric acid metabolism in I. scapularis, resulting in feeding impairment, diminished survival and reduced bacterial acquisition post haematophagy. Collectively, we discovered that metabolic reprogramming affects interspecies relationships and fitness in the clinically relevant tick I. scapularis.
Collapse
Affiliation(s)
- Sourabh Samaddar
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hanna J Laukaitis-Yousey
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University; Knowledge Corridor, Gandhinagar, India
| | - Xiaowei Wang
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- MP Biomedicals, Solon, OH, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Parisa Rangghran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Luisa Valencia
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Camila R Ferraz
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | - Benedict Khoo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Cull
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA
| | - Kristin L Rosche
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Dana K Shaw
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Jonathan Oliver
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sukanya Narasimhan
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Gary M Fiskum
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
2
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Tomioka N, Tran P T, Aoki M, Takemura Y, Syutsubo K. Escherichia coli removal in down-flow hanging sponge reactors: insights from laboratory reactor studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:295-304. [PMID: 39091064 DOI: 10.1080/10934529.2024.2384205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Down-flow hanging sponge (DHS) reactors, employed in domestic wastewater treatment, have demonstrated efficacy in eliminating Escherichia coli and other potentially pathogenic bacteria. The aim of this study was to elucidate the mechanism of removal of E. coli by employing a cube-shaped polyurethane sponge carrier within a compact hanging reactor. An E. coli removal experiment was conducted on this prepared sponge. Escherichia. coli level was found to decrease by more than 2 logs after passing through five nutrient-restricted DHS sponges. Conversely, a newly introduced sponge did not exhibit a comparable reduction in E. coli level. Furthermore, under conditions of optimal nutritional status, the reduction in E. coli level was limited to 0.5 logs, underscoring the crucial role of nutrient restriction in achieving effective elimination. Analysis of the sponge-associated bacterial community revealed the presence of a type VI secretion system (T6SS), a competitive mechanism observed in bacteria. This finding suggests that T6SS might play a pivotal role in contributing to the observed decline in E. coli level.
Collapse
Affiliation(s)
- Noriko Tomioka
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Thao Tran P
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Japan
- School of Chemistry and Life Science, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Yasuyuki Takemura
- Department of Civil Engineering, National Institute of Technology (KOSEN), Wakayama College, Gobo, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Japan
- Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
4
|
Vieira Lista MC, Vicente Santiago MB, Soto-López JD, García-Martín JM, Álamo-Sanz R, Belhassen-García M, Muro A. Identification of Rickettsia spp. in Ticks Removed from Tick-Bitten Humans in Northwestern Spain. INSECTS 2024; 15:571. [PMID: 39194776 DOI: 10.3390/insects15080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Tick-borne rickettsioses (TBRs) are distributed worldwide and are recognized as important emerging vector-borne zoonotic diseases in Europe. The aim of this study was to identify tick-associated Rickettsia among ticks removed from humans, and to track how tick populations and their associated pathogens have changed over the years. For this purpose, we conducted a tick surveillance study in northwestern Spain between 2018 and 2022. Ticks were morphologically identified and analyzed for the presence of rickettsial pathogens through the amplification of the citrate synthase (gltA) and the outer membrane protein A (ompA) genes. PCR products were sequenced and subjected to phylogenetic analyses. We collected 7397 ticks, with Ixodes ricinus being the species most frequently isolated. Based on the PCR results, Rickettsia DNA was detected in 1177 (15.91%) ticks, and 10 members of Rickettsia were identified: R. aeschlimannii, R. conorii subsp. conorii, R. conorii subsp. raoultii, R. massiliae, R. monacensis, R. sibirica subsp. mongolitimonae, R. slovaca, R. helvetica, Candidatus R. barbariae, and Candidatus R. rioja. Some of these Rickettsia have gone previously undetected in the study region. There is clear geographic and seasonal expansion not only of tick populations, but also of the associated Rickettsia. The comparison of our data with those obtained years ago provides a clear idea of how the spatiotemporal distributions of ticks and their associated Rickettsiae have changed over the years.
Collapse
Affiliation(s)
- María Carmen Vieira Lista
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - María Belén Vicente Santiago
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Julio David Soto-López
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Joaquina María García-Martín
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Rufino Álamo-Sanz
- Consejería de Sanidad Junta Castilla y León, 47007 Valladolid, Spain
| | - Moncef Belhassen-García
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
- Infectious Diseases Unit, Department of Internal Medicine, University Hospital of Salamanca, 37008 Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
5
|
Sanderlin AG, Kurka Margolis H, Meyer AF, Lamason RL. Cell-selective proteomics reveal novel effectors secreted by an obligate intracellular bacterial pathogen. Nat Commun 2024; 15:6073. [PMID: 39025857 PMCID: PMC11258249 DOI: 10.1038/s41467-024-50493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Pathogenic bacteria secrete protein effectors to hijack host machinery and remodel their infectious niche. Rickettsia spp. are obligate intracellular bacteria that can cause life-threatening disease, but their absolute dependence on the host cell has impeded discovery of rickettsial effectors and their host targets. We implemented bioorthogonal non-canonical amino acid tagging (BONCAT) during R. parkeri infection to selectively label, isolate, and identify effectors delivered into the host cell. As the first use of BONCAT in an obligate intracellular bacterium, our screen more than doubles the number of experimentally validated effectors for the genus. The seven novel secreted rickettsial factors (Srfs) we identified include Rickettsia-specific proteins of unknown function that localize to the host cytoplasm, mitochondria, and ER. We further show that one such effector, SrfD, interacts with the host Sec61 translocon. Altogether, our work uncovers a diverse set of previously uncharacterized rickettsial effectors and lays the foundation for a deeper exploration of the host-pathogen interface.
Collapse
Affiliation(s)
- Allen G Sanderlin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Abigail F Meyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Reller ME, Clemens EG, Bakken JS, Dumler JS. Emerging Tick-borne Infections in the Upper Midwest and Northeast United States Among Patients With Suspected Anaplasmosis. Open Forum Infect Dis 2024; 11:ofae149. [PMID: 38651141 PMCID: PMC11034950 DOI: 10.1093/ofid/ofae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Background Emerging tick-transmitted illnesses are increasingly recognized in the United States (US). To identify multiple potential tick-borne pathogens in patients from the Upper Midwest and Northeast US with suspected anaplasmosis, we used state-of-the-art methods (polymerase chain reaction [PCR] and paired serology) to test samples from patients in whom anaplasmosis had been excluded. Methods Five hundred sixty-eight patients without anaplasmosis had optimal samples available for confirmation of alternative tick-borne pathogens, including PCR and/or paired serology (acute-convalescent interval ≤42 days). Results Among 266 paired serology evaluations, for which the median acute-convalescent sampling interval was 28 (interquartile range, 21-33) days, we identified 35 acute/recent infections (24 [9%] Borrelia burgdorferi; 6 [2%] Ehrlichia chaffeensis/Ehrlichia muris subsp eauclairensis [EC/EME]; 3 [1%] spotted fever group rickettsioses [SFGR], and 2 [<1%] Babesia microti) in 33 (12%) patients. Two had concurrent or closely sequential infections (1 B burgdorferi and EC/EME, and 1 B burgdorferi and SFGR). Using multiplex PCR and reverse-transcription PCR, we identified 7 acute infections (5/334 [1%] Borrelia miyamotoi and 2/334 [1%] B microti) in 5 (1%) patients, including 2 with B microti-B miyamotoi coinfection, but no Borrelia mayonii, SFGR, Candidatus Anaplasma capra, Heartland virus, or Powassan virus infections. Thus, among 568 patients with ruled-out anaplasmosis, 38 (6.7%) had ≥1 agent of tick-borne illness identified, with 33 patients (35 infections) diagnosed by paired serology and 5 additional patients (7 infections) by PCR. Conclusions By identifying other tick-borne agents in patients in whom anaplasmosis had been excluded, we demonstrate that emerging tick-borne infections will be identified if specifically sought.
Collapse
Affiliation(s)
- Megan E Reller
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily G Clemens
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- St Luke's Hospital, Duluth, Minnesota, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Chavarría-Bencomo IV, Nevárez-Moorillón GV, Espino-Solís GP, Adame-Gallegos JR. Antibiotic resistance in tick-borne bacteria: A One Health approach perspective. J Infect Public Health 2023; 16 Suppl 1:153-162. [PMID: 37945496 DOI: 10.1016/j.jiph.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence and re-emergence of tick-borne bacteria (TBB) as a public health problem raises the uncertainty of antibiotic resistance in these pathogens, which could be dispersed to other pathogens. The impact of global warming has led to the emergence of pathogenic TBB in areas where they were not previously present and is another risk that must be taken into account under the One Health guides. This review aimed to analyze the existing information regarding antibiotic-resistant TBB and antibiotic-resistance genes (ARG) present in the tick microbiome, considering the potential to be transmitted to pathogenic microorganisms. Several Ehrlichia species have been reported to exhibit natural resistance to fluoroquinolones and typhus group Rickettsiae are naturally susceptible to erythromycin. TBB have a lower risk of acquiring ARG due to their natural habitat, but there is still a probability of acquiring them; furthermore, studies of these pathogens are limited. Pathogenic and commensal bacteria coexist within the tick microbiome along with ARGs for antibiotic deactivation, cellular protection, and efflux pumps; these ARGs confer resistance to antibiotics such as aminoglycosides, beta-lactamase, diaminopyrimidines, fluoroquinolones, glycopeptides, sulfonamides, and tetracyclines. Although with low probability, TBB can be a reservoir of ARGs.
Collapse
Affiliation(s)
- Inés Valeria Chavarría-Bencomo
- Facultad de Ciencias Químicas. Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico
| | - Guadalupe Virginia Nevárez-Moorillón
- Facultad de Ciencias Químicas. Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico.
| | - Gerardo Pavel Espino-Solís
- Laboratorio Nacional de Citometría de Flujo. Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico
| | - Jaime Raúl Adame-Gallegos
- Facultad de Ciencias Químicas. Universidad Autónoma de Chihuahua, Circuito Universitario s/n. Campus Universitario II., 31125 Chihuahua, Mexico
| |
Collapse
|
9
|
Chaparro-Gutiérrez JJ, Acevedo-Gutiérrez LY, Mendell NL, Robayo-Sánchez LN, Rodríguez-Durán A, Cortés-Vecino JA, Fernández D, Ramírez-Hernández A, Bouyer DH. First isolation of Rickettsia amblyommatis from Amblyomma mixtum in Colombia. Parasit Vectors 2023; 16:332. [PMID: 37730727 PMCID: PMC10510177 DOI: 10.1186/s13071-023-05950-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Rickettsiae are obligate intracellular Gram-negative bacteria that are the causative agent of rickettsioses and are spread to vertebrate hosts by arthropods. There are no previous reports of isolation of Rickettsia amblyommatis for Colombia. METHODS A convenience sampling was executed in three departments in Colombia for direct collection of adult ticks on domestic animals or over vegetation. Ticks were screened for the presence of Rickettsia spp. by real-time polymerase chain reaction (qPCR) amplifying the citrate synthase gene (gltA), and the positive sample was processed for isolation and further molecular characterization by conventional PCR. The absolute and relative frequencies were calculated for several tick species variables. All products from conventional PCR were further purified and sequenced by the Sanger technique. Representative sequences of 18 Rickettsia species were downloaded from GenBank. Consensus phylogenetic trees were constructed for the gltA, ompB, ompA, and htrA genes with 1000 replicates, calculating bootstrap values through the maximum likelihood method and the generalized time reversible substitution model in the MEGA 7.0 software program. RESULTS One female Amblyomma mixtum collected on vegetation was amplified by qPCR (gltA), indicating a frequency of 1.6% (1/61) for Rickettsia spp. INFECTION Sequence analysis of a rickettsial isolate from this tick in BLASTn showed 100% identity with gltA (340 base pairs [bp]), 99.87% for ompB (782 bp), 98.99% for htrA (497 bp), and 100% for ompA (488 bp) to R. amblyommatis. Concatenated phylogenetic analysis confirmed these findings indicating that the isolate is grouped with other sequences of Amblyomma cajennense complex from Panama and Brazil within the R. amblyommatis clade. CONCLUSIONS This paper describes the isolation and early molecular identification of a R. amblyommatis strain from A. mixtum in Colombia.
Collapse
Affiliation(s)
| | - Leidy Y Acevedo-Gutiérrez
- Department of Agricultural Sciences, Faculty of Veterinary Medicine, Lasallian University Corporation (Unilasallista), GIVET Research Group, Caldas, Antioquia, Colombia
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77550, USA
| | - Nicole L Mendell
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77550, USA
| | - Laura N Robayo-Sánchez
- Research Group Veterinary Parasitology, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, UNAL, Bogotá, Colombia
| | - Arlex Rodríguez-Durán
- Research Group Veterinary Parasitology, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, UNAL, Bogotá, Colombia
| | - Jesús A Cortés-Vecino
- Research Group Veterinary Parasitology, Laboratorio de Parasitología Veterinaria, Universidad Nacional de Colombia, UNAL, Bogotá, Colombia
| | - Diana Fernández
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77550, USA
| | - Alejandro Ramírez-Hernández
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77550, USA
- Universidad de La Salle, Bogotá, D.C., Colombia
| | - Donald H Bouyer
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77550, USA.
| |
Collapse
|
10
|
Paulson AR, Lougheed SC, Huang D, Colautti RI. Multiomics Reveals Symbionts, Pathogens, and Tissue-Specific Microbiome of Blacklegged Ticks (Ixodes scapularis) from a Lyme Disease Hot Spot in Southeastern Ontario, Canada. Microbiol Spectr 2023; 11:e0140423. [PMID: 37184407 PMCID: PMC10269869 DOI: 10.1128/spectrum.01404-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Ticks in the family Ixodidae are important vectors of zoonoses, including Lyme disease (LD), which is caused by spirochete bacteria from the Borreliella (Borrelia) burgdorferi sensu lato complex. The blacklegged tick (Ixodes scapularis) continues to expand across Canada, creating hot spots of elevated LD risk at the leading edge of its expanding range. Current efforts to understand the risk of pathogen transmission associated with I. scapularis in Canada focus primarily on targeted screens, while natural variation in the tick microbiome remains poorly understood. Using multiomics consisting of 16S metabarcoding and ribosome-depleted, whole-shotgun RNA transcriptome sequencing, we examined the microbial communities associated with adult I. scapularis (n = 32), sampled from four tissue types (whole tick, salivary glands, midgut, and viscera) and three geographical locations within a LD hot spot near Kingston, Ontario, Canada. The communities consisted of both endosymbiotic and known or potentially pathogenic microbes, including RNA viruses, bacteria, and a Babesia sp. intracellular parasite. We show that β-diversity is significantly higher between the bacterial communities of individual tick salivary glands and midguts than that of whole ticks. Linear discriminant analysis effect size (LEfSe) determined that the three potentially pathogenic bacteria detected by V4 16S rRNA sequencing also differed among dissected tissues only, including a Borrelia strain from the B. burgdorferi sensu lato complex, Borrelia miyamotoi, and Anaplasma phagocytophilum. Importantly, we find coinfection of I. scapularis by multiple microbes, in contrast to diagnostic protocols for LD, which typically focus on infection from a single pathogen of interest (B. burgdorferi sensu stricto). IMPORTANCE As a vector of human health concern, blacklegged ticks (Ixodes scapularis) transmit pathogens that cause tick-borne diseases (TBDs), including Lyme disease (LD). Several hot spots of elevated LD risk have emerged across Canada as I. scapularis expands its range. Focusing on a hot spot in southeastern Ontario, we used high-throughput sequencing to characterize the microbiome of whole ticks and dissected salivary glands and midguts. Compared with whole ticks, salivary glands and midguts were more diverse and associated with distinct bacterial communities that are less dominated by Rickettsia endosymbiont bacteria and are enriched for pathogenic bacteria, including a B. burgdorferi sensu lato-associated Borrelia sp., Borrelia miyamotoi, and Anaplasma phagocytophilum. We also found evidence of coinfection of I. scapularis by multiple pathogens. Overall, our study highlights the challenges and opportunities associated with the surveillance of the microbiome of I. scapularis for pathogen detection using metabarcoding and metatranscriptome approaches.
Collapse
Affiliation(s)
- Amber R. Paulson
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | | - David Huang
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
11
|
Samaddar S, O'Neal AJ, Marnin L, Rolandelli A, Singh N, Wang X, Butler LR, Rangghran P, Laukaitis HJ, Cabrera Paz FE, Fiskum GM, Polster BM, Pedra JHF. Metabolic disruption impacts tick fitness and microbial relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542501. [PMID: 37292783 PMCID: PMC10245996 DOI: 10.1101/2023.05.26.542501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arthropod-borne microbes rely on the metabolic state of a host to cycle between evolutionarily distant species. For instance, arthropod tolerance to infection may be due to redistribution of metabolic resources, often leading to microbial transmission to mammals. Conversely, metabolic alterations aids in pathogen elimination in humans, who do not ordinarily harbor arthropod-borne microbes. To ascertain the effect of metabolism on interspecies relationships, we engineered a system to evaluate glycolysis and oxidative phosphorylation in the tick Ixodes scapularis. Using a metabolic flux assay, we determined that the rickettsial bacterium Anaplasma phagocytophilum and the Lyme disease spirochete Borrelia burgdorferi, which are transstadially transmitted in nature, induced glycolysis in ticks. On the other hand, the endosymbiont Rickettsia buchneri, which is transovarially maintained, had a minimal effect on I. scapularis bioenergetics. Importantly, the metabolite β-aminoisobutyric acid (BAIBA) was elevated during A. phagocytophilum infection of tick cells following an unbiased metabolomics approach. Thus, we manipulated the expression of genes associated with the catabolism and anabolism of BAIBA in I. scapularis and detected impaired feeding on mammals, reduced bacterial acquisition, and decreased tick survival. Collectively, we reveal the importance of metabolism for tick-microbe relationships and unveil a valuable metabolite for I. scapularis fitness.
Collapse
Affiliation(s)
- Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Parisa Rangghran
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Hanna J Laukaitis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Francy E Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Gary M Fiskum
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brian M Polster
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
12
|
Gillespie JJ, Salje J. Orientia and Rickettsia: different flowers from the same garden. Curr Opin Microbiol 2023; 74:102318. [PMID: 37080115 DOI: 10.1016/j.mib.2023.102318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Recent discoveries of basal extracellular Rickettsiales have illuminated divergent evolutionary paths to host dependency in later-evolving lineages. Family Rickettsiaceae, primarily comprised of numerous protist- and invertebrate-associated species, also includes human pathogens from two genera, Orientia and Rickettsia. Once considered sister taxa, these bacteria form distinct lineages with newly appreciated lifestyles and morphological traits. Contrasting other rickettsial human pathogens in Family Anaplasmataceae, Orientia and Rickettsia species do not reside in host-derived vacuoles and lack glycolytic potential. With only a few described mechanisms, strategies for commandeering host glycolysis to support cytosolic growth remain to be discovered. While regulatory systems for this unique mode of intracellular parasitism are unclear, conjugative transposons unique to Orientia and Rickettsia species provide insights that are critical for determining how these obligate intracellular pathogens overtake eukaryotic cytosol.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, USA.
| | - Jeanne Salje
- Department of Biochemistry, Department of Pathology, and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Pan YS, Cui XM, Du LF, Xia LY, Du CH, Bell-Sakyi L, Zhang MZ, Zhu DY, Dong Y, Wei W, Zhao L, Sun Y, Lv QY, Ye RZ, He ZH, Wang Q, Li LJ, Yao MG, Xiong T, Jiang JF, Cao WC, Jia N. Coinfection of Two Rickettsia Species in a Single Tick Species Provides New Insight into Rickettsia- Rickettsia and Rickettsia-Vector Interactions. Microbiol Spectr 2022; 10:e0232322. [PMID: 36173317 PMCID: PMC9603609 DOI: 10.1128/spectrum.02323-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/04/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses. There is an ongoing debate as to whether established infections by one Rickettsia species preclude the maintenance of the second species in ticks. Here, we identified two Rickettsia species in inoculum from Haemaphysalis montgomeryi ticks and subsequently obtained pure isolates of each species by plaque selection. The two isolates were classified as a transitional group and spotted fever group rickettsiae and named Rickettsia hoogstraalii str CS and Rickettsia rhipicephalii str EH, respectively. The coinfection of these two Rickettsia species was detected in 25.6% of individual field-collected H. montgomeryi. In cell culture infection models, R. hoogstraalii str CS overwhelmed R. rhipicephalii str EH with more obvious cytopathic effects, faster plaque formation, and increased cellular growth when cocultured, and R. hoogstraalii str CS seemed to polymerize actin tails differently from R. rhipicephalii str EH in vitro. This work provides a model to investigate the mechanisms of both Rickettsia-Rickettsia and Rickettsia-vector interactions. IMPORTANCE The rickettsiae are a group of obligate intracellular Gram-negative bacteria that include human pathogens causing an array of clinical symptoms and even death. There is an important question in the field, that is whether one infection can block the superinfection of other rickettsiae. This work demonstrated the coinfection of two Rickettsia species in individual ticks and further highlighted that testing the rickettsial competitive exclusion hypothesis will undoubtedly be a promising area as methods for bioengineering and pathogen biocontrol become amenable for rickettsiae.
Collapse
Affiliation(s)
- Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Li-Feng Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chun-Hong Du
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Yi Dong
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Qing-Yu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Run-Ze Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Zhi-Hai He
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ming-Guo Yao
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|