1
|
Dang Y, Wang Y, Wei J, Zhang H, Yang Q, Wang B, Li J, Ye C, Chen Y, Han P, Jin X, Wang J, Bao X, Liu H, Ma H, Zhang L, Cheng L, Dong Y, Bai Y, Li Y, Lei Y, Xu Z, Zhang F, Ye W. 25-Hydroxycholesterol inhibits Hantavirus infection by reprogramming cholesterol metabolism. Free Radic Biol Med 2024; 224:232-245. [PMID: 39209137 DOI: 10.1016/j.freeradbiomed.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Hantavirus causes two types of acute diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. It is a major health concern due to its high mortality and lack of effective treatment. Type I interferon treatment has been suggested to be effective against hantavirus when treated in advance. Interferons induce multiple interferon-stimulated genes (ISGs), whose products are highly effective at resisting and controlling viruses. A product of ISGs, the enzyme cholesterol 25-hydroxylase (CH25H), catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). 25HC can inhibit multiple enveloped-virus infections, but the mechanism is largely unknown, and whether 25HC plays an important role in regulating hantavirus remains unexplored. In this study, we show that Hantaan virus (HTNV), the prototype hantavirus, induced CH25H gene in infected cells. Overexpression of CH25H and treatment with 25HC, inhibited HTNV infection, possibly by lowering 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase, HMGCR), which inhibits cholesterol biosynthesis. In addition, cholesterol-lowering drugs such as HMGCR-targeting statins have potent hantavirus inhibitory effects. Our results indicate that 25HC and some statins are potential antiviral agents effective against hantavirus infections. This study provides evidence that targeting cholesterol metabolism is promising in developing specific hantavirus antivirals and indicates the possibility of repurposing FDA-approved cholesterol-lowering drug, statins for treating hantavirus infection.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Wei
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Center for Disease Control and Prevention of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qiqi Yang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bin Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, 710100, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yang Chen
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Peijun Han
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, China
| | - Xiaolei Jin
- Cadet Brigade, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Wang
- Cadet Brigade, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaohui Bao
- Cadet Brigade, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yinlan Bai
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yinghui Li
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Cao N, Cai Y, Huang X, Jiang H, Huang Z, Xing L, Lu L, Jiang S, Xu W. Inhibition of influenza A virus and SARS-CoV-2 infection or co-infection by griffithsin and griffithsin-based bivalent entry inhibitor. mBio 2024; 15:e0074124. [PMID: 38587427 PMCID: PMC11077956 DOI: 10.1128/mbio.00741-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.
Collapse
Affiliation(s)
- Najing Cao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanxing Cai
- Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hanxiao Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziqi Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixiao Xing
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang H, Liu H, Wei J, Dang Y, Wang Y, Yang Q, Zhang L, Ye C, Wang B, Jin X, Cheng L, Ma H, Dong Y, Li Y, Bai Y, Lv X, Lei Y, Xu Z, Ye W, Zhang F. Single dose recombinant VSV based vaccine elicits robust and durable neutralizing antibody against Hantaan virus. NPJ Vaccines 2024; 9:28. [PMID: 38341504 DOI: 10.1038/s41541-024-00814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Hantaan virus (HTNV) is a pathogenic orthohantavirus prevalent in East Asia that is known to cause hemorrhagic fever with severe renal syndrome (HFRS), which has a high fatality rate. However, a Food and Drug Administration (FDA)-approved vaccine is not currently available against this virus. Although inactivated vaccines have been certified and used in endemic regions for decades, the neutralizing antibody (NAb) titer induced by inactivated vaccines is low and the immunization schedule is complicated, requiring at least three injections spanning approximately 6 months to 1 year. Replication-competent vesicular stomatitis virus (VSV)-based vaccines provide prolonged protection after a single injection. In this study, we successfully engineered the HTNV glycoprotein (GP) in the VSV genome by replacing the VSV-G open reading frame. The resulting recombinant (r) rVSV-HTNV-GP was rescued, and the immunogenicity of GP was similar to that of HTNV. BALB/c mice immunized with rVSV-HTNV-GP showed a high titer of NAb against HTNV after a single injection. Notably, the cross-reactive NAb response induced by rVSV-HTNV-GP against Seoul virus (an orthohantavirus) was higher than that induced by three sequential injections of inactivated vaccines. Upon challenge with HTNV, rVSV-HTNV-GP-immunized mice showed a profoundly reduced viral burden in multiple tissues, and inflammation in the lungs and liver was nearly undetectable. Moreover, a single injection of rVSV-HTNV-GP established a prolonged immunological memory status as the NAbs were sustained for over 1 year and provided long-term protection against HTNV infection. The findings of our study can support further development of an rVSV-HTNV-GP-based HTNV vaccine with a simplified immunization schedule.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Jing Wei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
- Center for Disease Control and Prevention of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Qiqi Yang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Chuantao Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Bin Wang
- Center of Clinical Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Xiaolei Jin
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yinghui Li
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yinlan Bai
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Xin Lv
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| |
Collapse
|
4
|
Bains A, Fischer K, Guan W, LiWang PJ. The Antiviral Activity of the Lectin Griffithsin against SARS-CoV-2 Is Enhanced by the Presence of Structural Proteins. Viruses 2023; 15:2452. [PMID: 38140693 PMCID: PMC10747160 DOI: 10.3390/v15122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Although COVID-19 transmission has been reduced by the advent of vaccinations and a variety of rapid monitoring techniques, the SARS-CoV-2 virus itself has shown a remarkable ability to mutate and persist. With this long track record of immune escape, researchers are still exploring prophylactic treatments to curtail future SARS-CoV-2 variants. Specifically, much focus has been placed on the antiviral lectin Griffithsin in preventing spike protein-mediated infection via the hACE2 receptor (direct infection). However, an oft-overlooked aspect of SARS-CoV-2 infection is viral capture by attachment receptors such as DC-SIGN, which is thought to facilitate the initial stages of COVID-19 infection in the lung tissue (called trans-infection). In addition, while immune escape is dictated by mutations in the spike protein, coronaviral virions also incorporate M, N, and E structural proteins within the particle. In this paper, we explored how several structural facets of both the SARS-CoV-2 virion and the antiviral lectin Griffithsin can affect and attenuate the infectivity of SARS-CoV-2 pseudovirus. We found that Griffithsin was a better inhibitor of hACE2-mediated direct infection when the coronaviral M protein is present compared to when it is absent (possibly providing an explanation regarding why Griffithsin shows better inhibition against authentic SARS-CoV-2 as opposed to pseudotyped viruses, which generally do not contain M) and that Griffithsin was not an effective inhibitor of DC-SIGN-mediated trans-infection. Furthermore, we found that DC-SIGN appeared to mediate trans-infection exclusively via binding to the SARS-CoV-2 spike protein, with no significant effect observed when other viral proteins (M, N, and/or E) were present. These results provide etiological data that may help to direct the development of novel antiviral treatments, either by leveraging Griffithsin binding to the M protein as a novel strategy to prevent SARS-CoV-2 infection or by narrowing efforts to inhibit trans-infection to focus on DC-SIGN binding to SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Kathryn Fischer
- Quantitative and Systems Biology, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
5
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1233433. [PMID: 37901807 PMCID: PMC10601933 DOI: 10.3389/fmicb.2023.1233433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Hantaviruses are a significant and emerging global public health threat, impacting more than 200,000 individuals worldwide each year. The single-stranded RNA viruses belong to the Hantaviridae family and are responsible for causing two acute febrile diseases in humans: Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Currently, there are no licensed treatments or vaccines available globally for HTNV infection. Various candidate drugs have shown efficacy in increasing survival rates during the early stages of HTNV infection. Some of these drugs include lactoferrin, ribavirin, ETAR, favipiravir and vandetanib. Immunotherapy utilizing neutralizing antibodies (NAbs) generated from Hantavirus convalescent patients show efficacy against HTNV. Monoclonal antibodies such as MIB22 and JL16 have demonstrated effectiveness in protecting against HTNV infection. The development of vaccines and antivirals, used independently and/or in combination, is critical for elucidating hantaviral infections and the impact on public health. RNA interference (RNAi) arised as an emerging antiviral therapy, is a highly specific degrades RNA, with post-transcriptional mechanism using eukaryotic cells platform. That has demonstrated efficacy against a wide range of viruses, both in vitro and in vivo. Recent antiviral methods involve using small interfering RNA (siRNA) and other, immune-based therapies to target specific gene segments (S, M, or L) of the Hantavirus. This therapeutic approach enhances viral RNA clearance through the RNA interference process in Vero E6 cells or human lung microvascular endothelial cells. However, the use of siRNAs faces challenges due to their low biological stability and limited in vivo targeting ability. Despite their successful inhibition of Hantavirus replication in host cells, their antiviral efficacy may be hindered. In the current review, we focus on advances in therapeutic strategies, as antiviral medications, immune-based therapies and vaccine candidates aimed at enhancing the body's ability to control the progression of Hantavirus infections, with the potential to reduce the risk of severe disease.
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
6
|
Guan W, Zhang N, Bains A, Martinez A, LiWang PJ. Sustained Delivery of the Antiviral Protein Griffithsin and Its Adhesion to a Biological Surface by a Silk Fibroin Scaffold. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5547. [PMID: 37629837 PMCID: PMC10456748 DOI: 10.3390/ma16165547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
The protein Griffithsin (Grft) is a lectin that tightly binds to high-mannose glycosylation sites on viral surfaces. This property allows Grft to potently inhibit many viruses, including HIV-1. The major route of HIV infection is through sexual activity, so an important tool for reducing the risk of infection would be a film that could be inserted vaginally or rectally to inhibit transmission of the virus. We have previously shown that silk fibroin can encapsulate, stabilize, and release various antiviral proteins, including Grft. However, for broad utility as a prevention method, it would be useful for an insertable film to adhere to the mucosal surface so that it remains for several days or weeks to provide longer-term protection from infection. We show here that silk fibroin can be formulated with adhesive properties using the nontoxic polymer hydroxypropyl methylcellulose (HPMC) and glycerol, and that the resulting silk scaffold can both adhere to biological surfaces and release Grft over the course of at least one week. This work advances the possible use of silk fibroin as an anti-viral insertable device to prevent infection by sexually transmitted viruses, including HIV-1.
Collapse
Affiliation(s)
- Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Ning Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
| | - Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Airam Martinez
- Department of Bioengineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|