1
|
Jiao Y, Zheng Y, Wu S, Zhou L, Jiang H, Li Y, Lin F. Antifungal activity of paeonol against Botrytis cinerea by disrupting the cell membrane and the application on cherry tomato preservation. Front Microbiol 2024; 15:1509124. [PMID: 39687874 PMCID: PMC11646983 DOI: 10.3389/fmicb.2024.1509124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Botrytis cinerea may cause gray mold in fruits and vegetables. Paeonol, an active component of traditional Chinese medicine, could suppress various microbial growth. However, reports on its effect on B. cinerea have not yet been documented. In this paper, we demonstrated that paeonol completely inhibited B. cinerea growth at 250 mg/L, corroborated by the observation of irregular morphological alterations in B. cinerea exposed to paeonol. Notably, the investigation of the operating mechanism revealed that paeonol induced cell death by disrupting the cell membrane, potentially mediated by the interaction between paeonol and ergosterol from the membrane. Further studies indicated that paeonol decreased ergosterol content and the expression of certain genes involved in ergosterol biosynthesis was significantly downregulated. In addition, paeonol treatment reduced the gray mold of cherry tomatoes. Meanwhile, compared to the control treatment, paeonol treatment could reduce weight loss and maintain higher contents of total soluble solid (TSS) and ascorbic acid, leading to a higher quality of the stored cherry tomato. Together, the data indicate that paeonol was effective as an alternative agent targeting disrupting the cell membrane to control gray mold and prolong the shelf life of cherry tomatoes, suggesting that paeonol could be used as a natural antifungal compound during postharvest storage.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuanhong Li
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
De Lima Gualque MW, Vaso CO, Dos Santos KS, Galeane MC, Gomes PC, Palma MS, Soares Mendes Giannini MJ, Moroz A, Fusco Almeida AM. Peptides from Galleria mellonella against Cryptococcus spp: toxicity in three-dimensional cell cultures and G. mellonella. Future Microbiol 2024:1-11. [PMID: 39552598 DOI: 10.1080/17460913.2024.2421632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Aim: This work aimed to test peptides against the planktonic and biofilm form of Cryptococcus spp. and in vitro toxicity using three-dimensional (3D) cells characterized and evaluate in vivo toxicity in Galleria mellonella.Materials & methods: Susceptibility tests were conducted on the planktonic form and biofilm formation. The toxicity of the peptides was evaluated in lung and brain cells in monolayer (2D) and 3D mono- and co-culture, in addition to in vivo analysis with G. mellonella.Results: Susceptibility values ranged from 31.25 to over 250 µg/ml with a fungicidal profile. Regarding toxicity, the PepM2 peptide was not toxic in 3D culture (500 µg/ml). G. mellonella, showed a survival rate of more than 85% In assays with brain and lung cell lines, concentrations ranged from 4 × 104 to 4 × 103 cells/well for brain cells and 1 × 103 cells/well for lung cells. Cocultures used 1 × 105 brain and 1 × 103 lung cells.Conclusion: This study shows that the peptides have great potential against cryptococcosis, and all spheroids were characterized as having a spheroidal and compact structure.
Collapse
Affiliation(s)
- Marcos William De Lima Gualque
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Carolina Orlando Vaso
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Kelvin Sousa Dos Santos
- Laboratory for Monoclonal Antibodies, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Mariana Cristina Galeane
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Paulo César Gomes
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Mario Sérgio Palma
- Department of Basic & Applied Biology/LSBZ, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, 13506-900, São Paulo, Brazil
| | - Maria José Soares Mendes Giannini
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Andrei Moroz
- Laboratory for Monoclonal Antibodies, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Ana Marisa Fusco Almeida
- Laboratory of Mycology & Center of Proteomics, Department of Clinical Analysis, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
3
|
Tian M, Zhang Z, Wang L, Lei F, Wang Z, Ma X, Gong Z, Wang J, He J, Wang D. Preparation of Paeonol Ethosomes by Microfluidic Technology Combined with Gaussians and Evaluation of Biological Activity by Zebrafish. ACS OMEGA 2024; 9:44425-44435. [PMID: 39524614 PMCID: PMC11541796 DOI: 10.1021/acsomega.4c05830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Paeonol, a monoterpene glycoside compound, has extensive pharmacological activities. However, its applications are restricted by poor water solubility and low bioavailability. In this study, paeonol ethosomes (PAE-ethosomes) were successfully prepared with a microfluidic method by optimizing the single factors and RSM test. The enhanced PAE-ethosomes were assessed using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), vesicle size (VS), zeta potential (ZP), and polydispersity index (PDI). Density functional theory analysis was employed to verify the molecular interaction. The optimized RSM conditions were a phospholipid concentration of 6 mg/mL, a cholesterol concentration of 1 mg/mL, and a total flow rate of 600 μL/min with a presumed value of 60.3% and confirmation results of 61.2 ± 0.3%. The prepared PAE-ethosomes showed better storage stability and a slow-release effect. The Q n of PAE-ethosomes rose from 167.0 ± 15.8 to 272.0 ± 16.4 μg/cm2 after 24 h, which was substantially greater than that from a 25% hydroethanolic solution of paeonol, according to in vitro skin retention and transdermal absorption. The Q s of PAE-ethosomes in the skin increased by 225% with 265.5 ± 15.4 vs 81.8 ± 8.2 μg/cm2, compared with 25% hydroethanolic solution of paeonol. Molecular interaction between paeonol and lecithin by Gaussians showed that the paeonol compound may have a higher probability of spreading in the hydrophilic phosphate group ("head") position for the PAE-ethosomes. The Tg (Lyz: EGFP) transgenic zebrafish results showed that PAE-ethosomes had better anti-inflammatory effects than paeonol. The microfluidic approach was efficient with good characteristics in physics and pharmacology with the potential in pharmaceutical use.
Collapse
Affiliation(s)
- Mingfa Tian
- School
of Pharmaceutical Sciences and Qingdao Academy of Chinese Medical
Sciences, Shandong University of Traditional
Chinese Medicine, Jinan 250355, China
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Zhiqi Zhang
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Li Wang
- Jinan
Vocational College of Engineering Department: Youth Leagure Committee, Jinan 250200, China
| | - Futing Lei
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Zheng Wang
- Department
of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China
- Department
of Reproductive Medicine, The Affiliated
Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xianzheng Ma
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Zhengfu Gong
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| | - Jianchun Wang
- Shandong
Jinte Safety Technology Co., Ltd., Jinan 250102, China
- Shandong
Giant E-Tech Co., Ltd., Jinan 250102, China
| | - Jixiang He
- School
of Pharmaceutical Sciences and Qingdao Academy of Chinese Medical
Sciences, Shandong University of Traditional
Chinese Medicine, Jinan 250355, China
| | - Daijie Wang
- School
of Pharmaceutical Sciences and Qingdao Academy of Chinese Medical
Sciences, Shandong University of Traditional
Chinese Medicine, Jinan 250355, China
- International
Joint Laboratory of Medicinal Food R&D and Health Products Creation/Biological
Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong
Academy of Sciences), Heze 274000, China
| |
Collapse
|
4
|
Qian W, Lu J, Gao C, Liu Q, Li Y, Zeng Q, Zhang J, Wang T, Chen S. Deciphering antifungal and antibiofilm mechanisms of isobavachalcone against Cryptococcus neoformans through RNA-seq and functional analyses. Microb Cell Fact 2024; 23:107. [PMID: 38609931 PMCID: PMC11015616 DOI: 10.1186/s12934-024-02369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Cryptococcus neoformans has been designated as critical fungal pathogens by the World Health Organization, mainly due to limited treatment options and the prevalence of antifungal resistance. Consequently, the utilization of novel antifungal agents is crucial for the effective treatment of C. neoformans infections. This study exposed that the minimum inhibitory concentration (MIC) of isobavachalcone (IBC) against C. neoformans H99 was 8 µg/mL, and IBC dispersed 48-h mature biofilms by affecting cell viability at 16 µg/mL. The antifungal efficacy of IBC was further validated through microscopic observations using specific dyes and in vitro assays, which confirmed the disruption of cell wall/membrane integrity. RNA-Seq analysis was employed to decipher the effect of IBC on the C. neoformans H99 transcriptomic profiles. Real-time quantitative reverse transcription PCR (RT-qPCR) analysis was performed to validate the transcriptomic data and identify the differentially expressed genes. The results showed that IBC exhibited various mechanisms to impede the growth, biofilm formation, and virulence of C. neoformans H99 by modulating multiple dysregulated pathways related to cell wall/membrane, drug resistance, apoptosis, and mitochondrial homeostasis. The transcriptomic findings were corroborated by the antioxidant analyses, antifungal drug sensitivity, molecular docking, capsule, and melanin assays. In vivo antifungal activity analysis demonstrated that IBC extended the lifespan of C. neoformans-infected Caenorhabditis elegans. Overall, the current study unveiled that IBC targeted multiple pathways simultaneously to inhibit growth significantly, biofilm formation, and virulence, as well as to disperse mature biofilms of C. neoformans H99 and induce cell death.
Collapse
Affiliation(s)
- Weidong Qian
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | - Jiaxing Lu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Chang Gao
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qiming Liu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, P. R. China
| | - Qiao Zeng
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ting Wang
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Si Chen
- Department of Immunology, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Sumlu E, Aydin M, Korucu EN, Alyar S, Nsangou AM. Artemisinin May Disrupt Hyphae Formation by Suppressing Biofilm-Related Genes of Candida albicans: In Vitro and In Silico Approaches. Antibiotics (Basel) 2024; 13:310. [PMID: 38666986 PMCID: PMC11047306 DOI: 10.3390/antibiotics13040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to assess the antifungal and antibiofilm efficacy of artemisinin against Candida (C.) species, analyze its impact on gene expression levels within C. albicans biofilms, and investigate the molecular interactions through molecular docking. The antifungal efficacy of artemisinin on a variety of Candida species, including fluconazole-resistant and -susceptible species, was evaluated by the microdilution method. The effect of artemisinin on C. albicans biofilm formation was investigated by MTT and FESEM. The mRNA expression of the genes related to biofilm was analyzed by qRT-PCR. In addition, molecular docking analysis was used to understand the interaction between artemisinin and C. albicans at the molecular level with RAS1-cAMP-EFG1 and EFG1-regulated genes. Artemisinin showed higher sensitivity against non-albicans Candida strains. Furthermore, artemisinin was strongly inhibitory against C. albicans biofilms at 640 µg/mL. Artemisinin downregulated adhesion-related genes ALS3, HWP1, and ECE1, hyphal development genes UME6 and HGC1, and hyphal CAMP-dependent protein kinase regulators CYR1, RAS1, and EFG1. Furthermore, molecular docking analysis revealed that artemisinin and EFG1 had the highest affinity, followed by UME6. FESEM analysis showed that the fluconazole- and artemisinin-treated groups exhibited a reduced hyphal network, unusual surface bulges, and the formation of pores on the cell surfaces. Our study suggests that artemisinin may have antifungal potential and showed a remarkable antibiofilm activity by significantly suppressing adhesion and hyphal development through interaction with key proteins involved in biofilm formation, such as EFG1.
Collapse
Affiliation(s)
- Esra Sumlu
- Department of Medical Pharmacology, Faculty of Medicine, KTO Karatay University, 42020 Konya, Turkey;
| | - Merve Aydin
- Department of Medical Microbiology, Faculty of Medicine, KTO Karatay University, 42020 Konya, Turkey
| | - Emine Nedime Korucu
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Turkey;
| | - Saliha Alyar
- Department of Chemistry, Faculty of Science, Karatekin University, 18100 Çankırı, Turkey;
| | - Ahmed Moustapha Nsangou
- Department of Medical Microbiology, Faculty of Medicine, Selçuk University, 42130 Konya, Turkey;
| |
Collapse
|
6
|
Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38:470-488. [PMID: 37872838 DOI: 10.1002/ptr.8049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Qian W, Lu J, Gao C, Liu Q, Yao W, Wang T, Wang X, Wang Z. Isobavachalcone exhibits antifungal and antibiofilm effects against C. albicans by disrupting cell wall/membrane integrity and inducing apoptosis and autophagy. Front Cell Infect Microbiol 2024; 14:1336773. [PMID: 38322671 PMCID: PMC10845358 DOI: 10.3389/fcimb.2024.1336773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Isobavachalcone (IBC) is a natural flavonoid with multiple pharmacological properties. This study aimed to evaluate the efficacy of IBC against planktonic growth and biofilms of Candida albicans (C. albicans) and the mechanisms underlying its antifungal action. The cell membrane integrity, cell metabolic viability, and cell morphology of C. albicans treated with IBC were evaluated using CLSM and FESEM analyses. Crystal violet staining, CLSM, and FESEM were used to assess the inhibition of biofilm formation, as well as dispersal and killing effects of IBC on mature biofilms. RNA-seq combined with apoptosis and autophagy assays was used to examine the mechanisms underlying the antifungal action of IBC. IBC exhibited excellent antifungal activity with 8 μg/mL of MIC for C. albicans. IBC disrupted the cell membrane integrity, and inhibited biofilm formation. IBC dispersed mature biofilms and damaged biofilm cells of C. albicans at 32 μg/mL. Moreover, IBC induced apoptosis and autophagy-associated cell death of C. albicans. The RNA-seq analysis revealed upregulation or downregulation of key genes involved in cell wall synthesis (Wsc1 and Fks1), ergosterol biosynthesis (Erg3, and Erg11), apoptisis (Hsp90 and Aif1), as well as autophagy pathways (Atg8, Atg13, and Atg17), and so forth, in response to IBC, as evidenced by the experiment-based phenotypic analysis. These results suggest that IBC inhibits C. albicans growth by disrupting the cell wall/membrane, caused by the altered expression of genes associated with β-1,3-glucan and ergosterol biosynthesis. IBC induces apoptosis and autophagy-associated cell death by upregulating the expression of Hsp90, and altering autophagy-related genes involved in the formation of the Atg1 complex and the pre-autophagosomal structure. Together, our findings provide important insights into the potential multifunctional mechanism of action of IBC.
Collapse
Affiliation(s)
- Weidong Qian
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jiaxing Lu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Chang Gao
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Qiming Liu
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Wendi Yao
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ting Wang
- School of Biological and Pharmaceutical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xiaobin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Bisso BN, Makuété AL, Tsopmene JU, Dzoyem JP. Biofilm Formation and Phospholipase and Proteinase Production in Cryptococcus neoformans Clinical Isolates and Susceptibility towards Some Bioactive Natural Products. ScientificWorldJournal 2023; 2023:6080489. [PMID: 37035538 PMCID: PMC10081907 DOI: 10.1155/2023/6080489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Background. Cryptococcosis is one of the most common fungal infections in immunocompromised patients, which is caused by Cryptococcus neoformans. However, relatively little is known about the virulence factors of C. neoformans and the incidence of antifungal drug resistance in C. neoformans is rapidly increasing. This study was undertaken to investigate the virulence factors in C. neoformans, thymol, curcumin, piperine, gallic acid, eugenol, and plumbagin for their potential antimicrobial activity against C. neoformans. Methods. The production of phospholipase and proteinase was detected using standard methods. Biofilm formation was determined using the microtiter plate method. The broth microdilution method was used to determine the antifungal activity. The antibiofilm activity was assessed using the safranin staining method. Results. All isolates of C. neoformans produced biofilms with optical density values ranging from 0.16 to 0.89. A majority of C. neoformans isolates that were tested exhibited strong phospholipase (7/8) and proteinase (5/8) production. Plumbagin (with minimum inhibitory concentration values ranging from 4 to 16 μg/mL) showed the highest antifungal activity followed by thymol (with minimum biofilm inhibitory concentration values ranging from 8 to 64 μg/mL). In addition, plumbagin showed the highest antibiofilm activity with minimum biofilm inhibitory concentration and minimum biofilm eradication concentration values ranging from 4 to 16 μg/mL and 32 to 256 μg/mL, respectively. Conclusion. Plumbagin, compared to other natural products studied, was the most efficient in terms of antifungal and antibiofilm activities. Hence, plumbagin could be used in combination with antifungals for the development of new anticryptococcal drugs.
Collapse
Affiliation(s)
- Borel Ndezo Bisso
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Alvine Lonkeng Makuété
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Joël Ulrich Tsopmene
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Jean Paul Dzoyem
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
9
|
Ovcharova MA, Schelkunov MI, Geras’kina OV, Makarova NE, Sukhacheva MV, Martyanov SV, Nevolina ED, Zhurina MV, Feofanov AV, Botchkova EA, Plakunov VK, Gannesen AV. C-Type Natriuretic Peptide Acts as a Microorganism-Activated Regulator of the Skin Commensals Staphylococcus epidermidis and Cutibacterium acnes in Dual-Species Biofilms. BIOLOGY 2023; 12:436. [PMID: 36979128 PMCID: PMC10045295 DOI: 10.3390/biology12030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The effect of C-type natriuretic peptide in a concentration closer to the normal level in human blood plasma was studied on the mono-species and dual-species biofilms of the skin commensal bacteria Cutibacterium acnes HL043PA2 and Staphylococcus epidermidis ATCC14990. Despite the marginal effect of the hormone on cutibacteria in mono-species biofilms, the presence of staphylococci in the community resulted in a global shift of the CNP effect, which appeared to increase the competitive properties of C. acnes, its proliferation and the metabolic activity of the community. S. epidermidis was mostly inhibited in the presence of CNP. Both bacteria had a significant impact on the gene expression levels revealed by RNA-seq. CNP did not affect the gene expression levels in mono-species cutibacterial biofilms; however, in the presence of staphylococci, five genes were differentially expressed in the presence of the hormone, including two ribosomal proteins and metal ABC transporter permease. In staphylococci, the Na-translocating system protein MpsB NADH-quinone oxidoreductase subunit L was downregulated in the dual-species biofilms in the presence of CNP, while in mono-species biofilms, two proteins of unknown function were downregulated. Hypothetically, at least one of the CNP mechanisms of action is via the competition for zinc, at least on cutibacteria.
Collapse
Affiliation(s)
- Maria A. Ovcharova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
| | - Olga V. Geras’kina
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | | | - Marina V. Sukhacheva
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Sergey V. Martyanov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Ekaterina D. Nevolina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Marina V. Zhurina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V. Feofanov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Ekaterina A. Botchkova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir K. Plakunov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrei V. Gannesen
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
10
|
Wang Y, Chen Y, Xin J, Chen X, Xu T, He J, Pan Z, Zhang C. Metabolomic profiles of the liquid state fermentation in co-culture of Eurotium amstelodami and Bacillus licheniformis. Front Microbiol 2023; 14:1080743. [PMID: 36778878 PMCID: PMC9909110 DOI: 10.3389/fmicb.2023.1080743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
As an important source of new drug molecules, secondary metabolites (SMs) produced by microorganisms possess important biological activities, such as antibacterial, anti-inflammatory, and hypoglycemic effects. However, the true potential of microbial synthesis of SMs has not been fully elucidated as the SM gene clusters remain silent under laboratory culture conditions. Herein, we evaluated the inhibitory effect of Staphylococcus aureus by co-culture of Eurotium amstelodami and three Bacillus species, including Bacillus licheniformis, Bacillus subtilis, and Bacillus amyloliquefaciens. In addition, a non-target approach based on ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) was used to detect differences in extracellular and intracellular metabolites. Notably, the co-culture of E. amstelodami and Bacillus spices significantly improved the inhibitory effect against S. aureus, with the combination of E. amstelodami and B. licheniformis showing best performance. Metabolomics data further revealed that the abundant SMs, such as Nummularine B, Lucidenic acid E2, Elatoside G, Aspergillic acid, 4-Hydroxycyclohexylcarboxylic acid, Copaene, and Pipecolic acid were significantly enhanced in co-culture. Intracellularly, the differential metabolites were involved in the metabolism of amino acids, nucleic acids, and glycerophospholipid. Overall, this work demonstrates that the co-culture strategy is beneficial for inducing biosynthesis of active metabolites in E. amstelodami and B. licheniformis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuanbo Zhang
- Laboratory of Microbial Resources and Industrial Application, College of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|