1
|
Guo Q, Zhang S. Clinical applications and challenges of metagenomic next-generation sequencing in the diagnosis of pediatric infectious disease. J LAB MED 2024; 48:97-106. [DOI: 10.1515/labmed-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Abstract
Infectious diseases seriously threaten the lives of children. Timely and accurate detection of pathogenic microorganisms and targeted medication are the keys to the diagnosing and treatment of infectious diseases in children. The next-generation metagenomic sequencing technology has attracted great attention in infectious diseases because of its characteristics such as no culture, high throughput, short detection cycle, wide coverage, and a good application prospect. In this paper, we review the studies of metagenomic next-generation sequencing in pediatric infectious diseases and analyze the challenges of its application in pediatric diseases.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Clinical Laboratory , Anhui Children’s Hospital , Hefei , P.R. China
| | - Shihai Zhang
- Department of Clinical Laboratory , Anhui Children’s Hospital , Hefei , P.R. China
| |
Collapse
|
2
|
Yan X, Yang G, Wang Y, Wang Y, Cheng J, Xu P, Qiu X, Su L, Liu L, Geng R, You Y, Liu H, Chu N, Ma L, Nie W. Nanopore sequencing for smear-negative pulmonary tuberculosis-a multicentre prospective study in China. Ann Clin Microbiol Antimicrob 2024; 23:51. [PMID: 38877520 PMCID: PMC11179381 DOI: 10.1186/s12941-024-00714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE In this prospective study, the diagnosis accuracy of nanopore sequencing-based Mycobacterium tuberculosis (MTB) detection was determined through examining bronchoalveolar lavage fluid (BALF) samples from pulmonary tuberculosis (PTB) -suspected patients. Compared the diagnostic performance of nanopore sequencing, mycobacterial growth indicator tube (MGIT) culture and Xpert MTB/rifampin resistance (MTB/RIF) assays. METHODS Specimens collected from suspected PTB cases across China from September 2021 to April 2022 were tested then assay diagnostic accuracy rates were compared. RESULTS Among the 111 suspected PTB cases that were ultimately diagnosed as PTB, the diagnostic rate of nanopore sequencing was statistically significant different from other assays (P < 0.05). Fleiss' kappa values of 0.219 and 0.303 indicated fair consistency levels between MTB detection results obtained using nanopore sequencing versus other assays, respectively. Respective PTB diagnostic sensitivity rates of MGIT culture, Xpert MTB/RIF and nanopore sequencing of 36.11%, 40.28% and 83.33% indicated superior sensitivity of nanopore sequencing. Analysis of area under the curve (AUC), Youden's index and accuracy values and the negative predictive value (NPV) indicated superior MTB detection performance for nanopore sequencing (with Xpert MTB/RIF ranking second), while the PTB diagnostic accuracy rate of nanopore sequencing exceeded corresponding rates of the other methods. CONCLUSIONS In comparison with MGIT culture and Xpert MTB/RIF assays, BALF's nanopore sequencing provided superior MTB detection sensitivity and thus is suitable for testing of sputum-scarce suspected PTB cases. However, negative results obtained using these assays should be confirmed based on additional evidence before ruling out a PTB diagnosis.
Collapse
Affiliation(s)
- Xiaojing Yan
- Medical Quality Control Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Guoli Yang
- Tuberculosis Department, Tuberculosis Hospital of Jilin Province (Jilin Provincial Infectious Disease Hospital), Changchun, 130500, PR China
| | - Yunfei Wang
- Department of Medicine, Hangzhou Shengting Medical Technolog, Ltd, Zhejiang, Hangzhou, 310000, PR China
| | - Yuqing Wang
- The Fourth People's Hospital of Qinghai Province, Xining, 510650, PR China
| | - Jie Cheng
- Tuberculosis Department, Anhui Provincial Chest Hospital, Hefei, 230022, PR China
| | - Peisong Xu
- Department of Medicine, Hangzhou Shengting Medical Technolog, Ltd, Zhejiang, Hangzhou, 310000, PR China
| | - Xiaoli Qiu
- Department of Medicine, Hangzhou Shengting Medical Technolog, Ltd, Zhejiang, Hangzhou, 310000, PR China
| | - Lei Su
- Tuberculosis Department, Henan Province Anyang City Tuberculosis Prevention and Control Institute, Henan Province, Anyang City, 455000, PR China
| | - Lina Liu
- Tuberculosis Department, Hengshui Third People's Hospital, Hengshui City, Henan Province, 053099, PR China
| | - Ruixue Geng
- Tuberculosis Department, Hohhot Second Hospital, Hohhot City, Inner Mongolia Autonomous Region, 010020, PR China
| | - Yingxia You
- Tuberculosis Department, Zhengzhou Sixth People's Hospital, Zhengzhou City, Henan Province, 450015, PR China
| | - Hui Liu
- Medical Quality Control Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China
| | - Naihui Chu
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China.
| | - Li Ma
- Department of medical oncology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China.
| | - Wenjuan Nie
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China.
| |
Collapse
|
3
|
Chen Y, Wang J, Niu T. Clinical and diagnostic values of metagenomic next-generation sequencing for infection in hematology patients: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:167. [PMID: 38326763 PMCID: PMC10848439 DOI: 10.1186/s12879-024-09073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVES This meta-analysis focused on systematically assessing the clinical value of mNGS for infection in hematology patients. METHODS We searched for studies that assessed the clinical value of mNGS for infection in hematology patients published in Embase, PubMed, Cochrane Library, Web of Science, and CNKI from inception to August 30, 2023. We compared the detection positive rate of pathogen for mNGS and conventional microbiological tests (CMTs). The diagnostic metrics, antibiotic adjustment rate and treatment effective rate were combined. RESULTS Twenty-two studies with 2325 patients were included. The positive rate of mNGS was higher than that of CMT (blood: 71.64% vs. 24.82%, P < 0.001; BALF: 89.86% vs. 20.78%, P < 0.001; mixed specimens: 82.02% vs. 28.12%, P < 0.001). The pooled sensitivity and specificity were 87% (95%CI: 81-91%) and 59% (95%CI: 43-72%), respectively. The reference standard/neutropenia and research type/reference standard may be sources of heterogeneity in sensitivity and specificity, respectively. The pooled antibiotic adjustment rate according to mNGS was 49.6% (95% CI: 41.8-57.4%), and the pooled effective rate was 80.9% (95% CI: 62.4-99.3%). CONCLUSION mNGS has high positive detection rates in hematology patients. mNGS can guide clinical antibiotic adjustments and improve prognosis, especially in China.
Collapse
Affiliation(s)
- Yuhui Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinjin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
钟 珊, 杨 明. [Value of metagenomic next-generation sequencing in children with hematological malignancies complicated with infections]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:718-725. [PMID: 37529954 PMCID: PMC10414172 DOI: 10.7499/j.issn.1008-8830.2212059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/02/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To explore the value of metagenomic next-generation sequencing (mNGS) in the pathogen identification in children with hematological malignancies complicated with infections. METHODS A retrospective analysis was conducted on clinical data and pathogenic test results of 43 children with hematological malignancies who underwent microbial culture and mNGS due to infections in the Third Xiangya Hospital of Central South University between June 2020 and July 2022. Differences in detection rates and characteristics of pathogenic microorganisms detected by mNGS and microbial culture were compared. RESULTS A total of 54 specimens were examined, and the overall detection rate of pathogen by mNGS (80%, 43/54) was significantly higher than that by microbial culture (30%, 16/54) (P<0.001). The most commonly detected infection type by mNGS was viral infection, followed by fungal infection combined viral infection, while that by microbial culture was bacterial infection, followed by fungal infection. The detection rate of fungi by mNGS (33%, 18/54) was higher than that by microbial culture (6%, 3/54) (P<0.001). The detection rate of two or more pathogenic microorganisms by mNGS was higher at 48% compared to microbial culture at 9% (P<0.05). The detection rate of two or more types of pathogenic microorganisms by mNGS was also significantly higher at 33% compared to microbial culture at 2% (P<0.05). The most commonly detected bacteria and fungi by mNGS were Pseudomonas aeruginosa and Candida tropicalis, respectively, in peripheral blood, while Streptococcus pneumoniae and Pneumocystis jirovecii were most commonly detected in bronchoalveolar lavage fluid. Treatment adjustments based on mNGS results were beneficial for 35% (15/43) of the cases. CONCLUSIONS mNGS has a higher detection rate than microbial culture and has obvious advantages in diagnosing mixed and fungal infections, making it a useful supplementary diagnostic method to microbial culture.
Collapse
|
5
|
Liu Z, Yang Y, Wang Q, Wang L, Nie W, Chu N. Diagnostic value of a nanopore sequencing assay of bronchoalveolar lavage fluid in pulmonary tuberculosis. BMC Pulm Med 2023; 23:77. [PMID: 36890507 PMCID: PMC9996878 DOI: 10.1186/s12890-023-02337-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND To determine the diagnostic accuracy of a nanopore sequencing assay of PCR products from a M. tuberculosis complex-specific region for testing of bronchoalveolar lavage fluid (BALF) samples or sputum samples from suspected pulmonary tuberculosis (PTB) patients and compare the results to results obtained for MGIT and Xpert assays. METHODS Cases with suspected PTB (n = 55) were diagnosed from January 2019 to December 2021 based on results of nanopore sequencing, MGIT culture, and Xpert MTB/RIF testing of BALF and sputum samples collected during hospitalization. Diagnostic accuracies of assays were compared. RESULTS Ultimately, data from 29 PTB patients and 26 non-PTB cases were analyzed. PTB diagnostic sensitivities of MGIT, Xpert MTB/RIF, and nanopore sequencing assays were 48.28%, 41.38%, and 75.86%, respectively, thus demonstrating that nanopore sequencing provided greater sensitivity than was provided by MGIT culture and Xpert assays (P < 0.05). PTB diagnostic specificities of the respective assays were 65.38%, 100%, and 80.77%, which corresponded with kappa coefficient (κ) values of 0.14, 0.40, and 0.56, respectively. These results indicate that nanopore sequencing provided superior overall performance as compared to Xpert and MGIT culture assays and provided significantly greater PTB diagnostic accuracy than Xpert and sensitivity comparable to that of the MGIT culture assay. CONCLUSION Our findings suggest that improved detection of PTB in suspected cases was achieved using nanopore sequencing-based testing of BALF or sputum samples than was achieved using Xpert and MGIT culture-based assays, and nanopore sequencing results alone cannot be used to rule out PTB.
Collapse
Affiliation(s)
- Zhifeng Liu
- Beijing Emercency Mecial Center, Beijing, 100031, People's Republic of China
| | - Yang Yang
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Qingfeng Wang
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Lei Wang
- Tuberculosis Department, Dezhou Second People's Hospital, Textile Street, Canal Economic Development Zone, Dezhou, 253007, People's Republic of China
| | - Wenjuan Nie
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| | - Naihui Chu
- Tuberculosis Department, Beijing Chest Hospital Affiliated to Capital Medical University, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|