1
|
Chen J, Chen R, Huang J. A pan-cancer single-cell transcriptional analysis of antigen-presenting cancer-associated fibroblasts in the tumor microenvironment. Front Immunol 2024; 15:1372432. [PMID: 38903527 PMCID: PMC11187094 DOI: 10.3389/fimmu.2024.1372432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.
Collapse
Affiliation(s)
- Juntao Chen
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Mire MM, Elesela S, Morris S, Corfas G, Rasky A, Lukacs NW. Respiratory Virus-Induced PARP1 Alters DC Metabolism and Antiviral Immunity Inducing Pulmonary Immunopathology. Viruses 2024; 16:910. [PMID: 38932202 PMCID: PMC11209157 DOI: 10.3390/v16060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Previous studies from our laboratory and others have established the dendritic cell (DC) as a key target of RSV that drives infection-induced pathology. Analysis of RSV-induced transcriptomic changes in RSV-infected DC revealed metabolic gene signatures suggestive of altered cellular metabolism. Reverse phase protein array (RPPA) data showed significantly increased PARP1 phosphorylation in RSV-infected DC. Real-time cell metabolic analysis demonstrated increased glycolysis in PARP1-/- DC after RSV infection, confirming a role for PARP1 in regulating DC metabolism. Our data show that enzymatic inhibition or genomic ablation of PARP1 resulted in increased ifnb1, il12, and il27 in RSV-infected DC which, together, promote a more appropriate anti-viral environment. PARP1-/- mice and PARP1-inhibitor-treated mice were protected against RSV-induced immunopathology including airway inflammation, Th2 cytokine production, and mucus hypersecretion. However, delayed treatment with PARP1 inhibitor in RSV-infected mice provided only partial protection, suggesting that PARP1 is most important during the earlier innate immune stage of RSV infection.
Collapse
Affiliation(s)
- Mohamed M. Mire
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Srikanth Elesela
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Department of Otolaryngology, Kresege Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Andrew Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X, Peng X. Glycolysis-cholesterol metabolic axis in immuno-oncology microenvironment: emerging role in immune cells and immunosuppressive signaling. Cell Biosci 2023; 13:189. [PMID: 37828561 PMCID: PMC10571292 DOI: 10.1186/s13578-023-01138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Cell proliferation and function require nutrients, energy, and biosynthesis activity to duplicate repertoires for each daughter. It is therefore not surprising that tumor microenvironment (TME) metabolic reprogramming primarily orchestrates the interaction between tumor and immune cells. Tumor metabolic reprogramming affords bioenergetic, signaling intermediates, and biosynthesis requirements for both malignant and immune cells. Different immune cell subsets are recruited into the TME, and these manifestations have distinct effects on tumor progression and therapeutic outcomes, especially the mutual contribution of glycolysis and cholesterol metabolism. In particularly, glycolysis-cholesterol metabolic axis interconnection plays a critical role in the TME modulation, and their changes in tumor metabolism appear to be a double-edged sword in regulating various immune cell responses and immunotherapy efficacy. Hence, we discussed the signature manifestation of the glycolysis-cholesterol metabolic axis and its pivotal role in tumor immune regulation. We also highlight how hypothetical combinations of immunotherapy and glycolysis/cholesterol-related metabolic interventions unleash the potential of anti-tumor immunotherapies, as well as developing more effective personalized treatment strategies.
Collapse
Affiliation(s)
- Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhigong Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Keliang Chen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Sichuan, People's Republic of China.
| | - Xiaolin Hu
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
He QQ, Huang Y, Nie L, Ren S, Xu G, Deng F, Cheng Z, Zuo Q, Zhang L, Cai H, Wang Q, Wang F, Ren H, Yan H, Xu K, Zhou L, Lu M, Lu Z, Zhu Y, Liu S. MAVS integrates glucose metabolism and RIG-I-like receptor signaling. Nat Commun 2023; 14:5343. [PMID: 37660168 PMCID: PMC10475032 DOI: 10.1038/s41467-023-41028-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
MAVS is an adapter protein involved in RIG-I-like receptor (RLR) signaling in mitochondria, peroxisomes, and mitochondria-associated ER membranes (MAMs). However, the role of MAVS in glucose metabolism and RLR signaling cross-regulation and how these signaling pathways are coordinated among these organelles have not been defined. This study reports that RLR action drives a switch from glycolysis to the pentose phosphate pathway (PPP) and the hexosamine biosynthesis pathway (HBP) through MAVS. We show that peroxisomal MAVS is responsible for glucose flux shift into PPP and type III interferon (IFN) expression, whereas MAMs-located MAVS is responsible for glucose flux shift into HBP and type I IFN expression. Mechanistically, peroxisomal MAVS interacts with G6PD and the MAVS signalosome forms at peroxisomes by recruiting TNF receptor-associated factor 6 (TRAF6) and interferon regulatory factor 1 (IRF1). By contrast, MAMs-located MAVS interact with glutamine-fructose-6-phosphate transaminase, and the MAVS signalosome forms at MAMs by recruiting TRAF6 and TRAF2. Our findings suggest that MAVS mediates the interaction of RLR signaling and glucose metabolism.
Collapse
Affiliation(s)
- Qiao-Qiao He
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sheng Ren
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Zuo
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lin Zhang
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Huanhuan Cai
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| | - Hong Ren
- Shanghai Children's Medical Center, Affiliated Hospital to Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Palermo E, Alexandridi M, Di Carlo D, Muscolini M, Hiscott J. Virus-like particle - mediated delivery of the RIG-I agonist M8 induces a type I interferon response and protects cells against viral infection. Front Cell Infect Microbiol 2022; 12:1079926. [PMID: 36590581 PMCID: PMC9795031 DOI: 10.3389/fcimb.2022.1079926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Virus-Like Particles (VLPs) are nanostructures that share conformation and self-assembly properties with viruses, but lack a viral genome and therefore the infectious capacity. In this study, we produced VLPs by co-expression of VSV glycoprotein (VSV-G) and HIV structural proteins (Gag, Pol) that incorporated a strong sequence-optimized 5'ppp-RNA RIG-I agonist, termed M8. Treatment of target cells with VLPs-M8 generated an antiviral state that conferred resistance against multiple viruses. Interestingly, treatment with VLPs-M8 also elicited a therapeutic effect by inhibiting ongoing viral replication in previously infected cells. Finally, the expression of SARS-CoV-2 Spike glycoprotein on the VLP surface retargeted VLPs to ACE2 expressing cells, thus selectively blocking viral infection in permissive cells. These results highlight the potential of VLPs-M8 as a therapeutic and prophylactic vaccine platform. Overall, these observations indicate that the modification of VLP surface glycoproteins and the incorporation of nucleic acids or therapeutic drugs, will permit modulation of particle tropism, direct specific innate and adaptive immune responses in target tissues, and boost immunogenicity while minimizing off-target effects.
Collapse
|