1
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz JM, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. Front Genet 2024; 15:1488109. [PMID: 39748949 PMCID: PMC11693692 DOI: 10.3389/fgene.2024.1488109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and pfhrp2/3 deletions), and SNP barcodes to provide population genetics estimates of Plasmodium vivax and Plasmodium falciparum parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites. Methods We analyzed 51 P. vivax and 80 P. falciparum samples from three distinct areas in the Loreto region of the Peruvian Amazon: Nueva Jerusalén (NJ), Mazan (MZ), and Santa Emilia (SE). Population genetics estimates and costs were compared using the SNP barcodes (P. vivax: 40 SNPs and P. falciparum: 28 SNPs) and MS panels (P. vivax: 16 MS and P. falciparum: 7 MS). Results The P. vivax genetic diversity (expected heterozygosity, He) trends were similar for both markers: He MS = 0.68-0.78 (p > 0.05) and He SNP = 0.36-0.38 (p > 0.05). P. vivax pairwise genetic differentiation (fixation index, FST) was also comparable: FST-MS = 0.04-0.14 and FST-SNP = 0.03-0.12 (pairwise p > 0.05). In addition, P. falciparum genetic diversity trends (He MS = 0-0.48, p < 0.05; He SNP = 0-0.09, p < 0.05) and pairwise FST comparisons (FST-MS = 0.14-0.65, FST-SNP = 0.19-0.61, pairwise p > 0.05) were concordant between both panels. For P. vivax, no geographic clustering was observed with any panel, whereas for P. falciparum, similar population structure clustering was observed with both markers, assigning most parasites from NJ to a distinct subpopulation from MZ and SE. We found significant differences in detecting polyclonal infections: for P. vivax, MS identified a higher proportion of polyclonal infections than SNP (69% vs. 33%, p = 3.3 × 10-5), while for P. falciparum, SNP and MS detected similar rates (46% vs. 31%, p = 0.21). The AmpliSeq assay had a higher estimated per-sample cost compared to MS ($183 vs. $27-49). Discussion The SNP barcodes in the AmpliSeq assays offered comparable results to MS for investigating population genetics in P. vivax and P. falciparum populations, despite some discrepancies in determining polyclonality. Given both panels have their respective advantages and limitations, the choice between both should be guided by research objectives, costs, and resource availability.
Collapse
Affiliation(s)
- Luis Cabrera-Sosa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mahdi Safarpour
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Roberson Ramirez
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia y Enfermedades Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRch), Global Health Institute (GHI), Family Medicine and Population Health Department (FAMPOP), Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Kattenberg JH, Mutsaers M, Nguyen VH, Nguyen THN, Umugwaneza A, Lara-Escandell M, Nguyen XX, Nguyen THB, Rosanas-Urgell A. Genetic surveillance shows spread of ACT resistance during period of malaria decline in Vietnam (2018-2020). Front Genet 2024; 15:1478706. [PMID: 39687741 PMCID: PMC11646998 DOI: 10.3389/fgene.2024.1478706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Vietnam's goal to eliminate malaria by 2030 is challenged by the further spread of drug-resistant Plasmodium falciparum malaria to key antimalarials, particularly dihydroartemisinin-piperaquine (DHA-PPQ). Methods The custom targeted NGS amplicon sequencing assay, AmpliSeq Pf Vietnam v2, targeting drug resistance, population genetic- and other markers, was applied to detect genetic diversity and resistance profiles in samples from 8 provinces in Vietnam (n = 354), in a period of steep decline of incidence (2018-2020). Variants in 14 putative resistance genes, including P. falciparum Kelch 13 (PfK13) and P. falciparum chloroquine resistance transporter (Pfcrt), were analyzed and within-country parasite diversity was evaluated. Other targets included KEL1-lineage markers and diagnostic markers of Pfhrp2/3. Results A concerning level of DHA-PPQ resistance was detected. The C580Y mutation in PfK13 was found in nearly 80% of recent samples, a significant rise from previous data. Vietnam has experienced a significant challenge with the spread of DHA-PPQ resistant malaria parasites, particularly in the provinces of Binh Phuoc and Gia Lai. Resistance spread to high levels in Binh Thuan prior to the country-wide treatment policy change from DHA-PPQ to pyronadine-artesunate (PA). A complex picture of PPQ-resistance dynamics was observed, with an increase of PPQ-resistance associated Pfcrt mutations, indicating an evolutionary response to antimalarial pressure. Additionally, the compensatory mutation C258W in Pfcrt, which increases chloroquine (CQ) resistance while reversing PPQ resistance, is emerging in Gia Lai following the adoption of PA as the first-line treatment. This study found high levels of multidrug resistance, with over 70% of parasites in 6 out of 8 provinces showing significant sulfadoxine-pyrimethamine (SP) resistance and widespread chloroquine-resistant Pfcrt haplotypes. We also report an absence of P. falciparum histidine rich protein 2 and 3 (Pfhrp2/3) gene deletions, ensuring the continued reliability of HRP2/3-based rapid diagnostic tests. P. falciparum populations in Vietnam are becoming more isolated, with clonal populations showing high geographical clustering by province. The central highlands, particularly Gia Lai province, have the highest residual malaria burden but exhibit low diversity and clonal populations, likely due to the pressures from the antimalarial drugs and targeted national malaria control program (NMCP) efforts. Discussion In conclusion, examining a broad panel of full-length resistance genes and SNPs provided high-resolution insights into genetic diversity and resistance evolution in Vietnam, offering valuable information to inform local treatment and intervention strategies.
Collapse
Affiliation(s)
| | - Mathijs Mutsaers
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Van Hong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Hong Ngoc Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Arlette Umugwaneza
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maria Lara-Escandell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xuan Xa Nguyen
- Regional Artemisinin Initiative, RAI project, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Huong Binh Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
3
|
Popkin-Hall ZR, Niaré K, Crudale R, Simkin A, Fola AA, Sanchez JF, Pannebaker DL, Giesbrecht DJ, Kim IE, Aydemir Ö, Bailey JA, Valdivia HO, Juliano JJ. High-throughput genotyping of Plasmodium vivax in the Peruvian Amazon via molecular inversion probes. Nat Commun 2024; 15:10219. [PMID: 39587110 PMCID: PMC11589703 DOI: 10.1038/s41467-024-54731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Plasmodium vivax transmission occurs throughout the tropics and is an emerging threat in areas of Plasmodium falciparum decline, causing relapse infections that complicate treatment and control. Targeted sequencing for P. falciparum has been widely deployed to detect population structure and the geographic spread of antimalarial and diagnostic resistance. However, there are fewer such tools for P. vivax. Leveraging global variation data, we designed four molecular inversion probe (MIP) genotyping panels targeting geographically differentiating SNPs, neutral SNPs, putative antimalarial resistance genes, and vaccine candidate genes. We deployed these MIP panels on 866 infections from the Peruvian Amazon and identified transmission networks with clonality (IBD[identity by descent]>0.99), copy number variation in Pvdbp and multiple Pvrbps, mutations in antimalarial resistance orthologs, and balancing selection in 13 vaccine candidate genes. Our MIP panels are the broadest genotyping panel currently available and are poised for successful deployment in other regions of P. vivax transmission.
Collapse
Affiliation(s)
- Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Alfred Simkin
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Juan F Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Danielle L Pannebaker
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Isaac E Kim
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Özkan Aydemir
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum of Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Cabrera-Sosa L, Safarpour M, Kattenberg JH, Ramirez R, Vinetz J, Rosanas-Urgell A, Gamboa D, Delgado-Ratto C. Comparing newly developed SNP barcode panels with microsatellites to explore population genetics of malaria parasites in the Peruvian Amazon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611954. [PMID: 39314390 PMCID: PMC11418992 DOI: 10.1101/2024.09.09.611954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control/elimination programs. Considering the genetic differences among parasites from different areas in the Peruvian Amazon, we previously designed SNP barcode panels for Plasmodium vivax (Pv) and P. falciparum (Pf), integrated into AmpliSeq assays, to provide population genetics estimates of malaria parasites. These AmpliSeq assays are ideal for MMS: multiplexing different traits of interest, applicable to many use cases, and high throughput for large numbers of samples. The present study compares the genetic resolution of the SNP barcode panels in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate Amazonian malaria parasites. Malaria samples collected in remote areas of the Peruvian Amazon (51 Pv & 80 Pf samples) were characterized using the Ampliseq assays and MS. Population genetics estimates (complexity of infection, genetic diversity and differentiation, and population structure) were compared using the SNP barcodes (Pv: 40 SNPs & Pf: 28 SNPs) and MS panels (Pv: 16 MS & Pf: 7 MS). The genetic diversity of Pv (expected heterozygosity, He ) was similar across the subpopulations for both makers: He MS = 0.68 - 0.78 (p = 0.23) and He SNP = 0.36 - 0.38 (p = 0.80). Pairwise genetic differentiation (fixation index, F ST ) was also comparable: F ST-MS = 0.04 - 0.14 and F ST-SNP = 0.03 - 0.12 (p = 0.34 - 0.85). No geographic clustering was observed with any panel. In addition, Pf genetic diversity trends ( He MS = 0 - 0.48 p = 0.03 - 1; He SNP = 0 - 0.09, p = 0.03 - 1) and pairwise F ST comparisons (F ST-MS = 0.14 - 0.65, F ST-SNP = 0.19 - 0.61, p = 0.24 - 0.83) were concordant between the panels. Similar population structure clustering was observed with both SNP and MS, highlighting one Pf subpopulation in an indigenous community. The SNP barcodes in the Pv AmpliSeq v2 Peru and Pf AmpliSeq v1 Peru assays offer comparable results to MS panels when investigating population genetics in Pv and Pv populations. Therefore, the AmpliSeq assays can efficiently characterize malaria transmission dynamics and population structure and support malaria elimination efforts in Peru.
Collapse
|
5
|
Kattenberg JH, Cabrera-Sosa L, Figueroa-Ildefonso E, Mutsaers M, Monsieurs P, Guetens P, Infante B, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Plasmodium vivax genomic surveillance in the Peruvian Amazon with Pv AmpliSeq assay. PLoS Negl Trop Dis 2024; 18:e0011879. [PMID: 38991038 PMCID: PMC11265702 DOI: 10.1371/journal.pntd.0011879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/23/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Plasmodium vivax is the most predominant malaria species in Latin America, constituting 71.5% of malaria cases in 2021. With several countries aiming for malaria elimination, it is crucial to prioritize effectiveness of national control programs by optimizing the utilization of available resources and strategically implementing necessary changes. To support this, there is a need for innovative approaches such as genomic surveillance tools that can investigate changes in transmission intensity, imported cases and sources of reintroduction, and can detect molecular markers associated with drug resistance. METHODOLOGY/PRINCIPAL FINDINGS Here, we apply a modified highly-multiplexed deep sequencing assay: Pv AmpliSeq v2 Peru. The tool targets a newly developed 41-SNP Peru barcode for parasite population analysis within Peru, the 33-SNP vivaxGEN-geo panel for country-level classification, and 11 putative drug resistance genes. It was applied to 230 samples from the Peruvian Amazon (2007-2020), generating baseline surveillance data. We observed a heterogenous P. vivax population with high diversity and gene flow in peri-urban areas of Maynas province (Loreto region) with a temporal drift using all SNPs detected by the assay (nSNP = 2909). In comparison, in an indigenous isolated area, the parasite population was genetically differentiated (FST = 0.07-0.09) with moderate diversity and high relatedness between isolates in the community. In a remote border community, a clonal P. vivax cluster was identified, with distinct haplotypes in drug resistant genes and ama1, more similar to Brazilian isolates, likely representing an introduction of P. vivax from Brazil at that time. To test its applicability for Latin America, we evaluated the SNP Peru barcode in P. vivax genomes from the region and demonstrated the capacity to capture local population clustering at within-country level. CONCLUSIONS/SIGNIFICANCE Together this data shows that P. vivax transmission is heterogeneous in different settings within the Peruvian Amazon. Genetic analysis is a key component for regional malaria control, offering valuable insights that should be incorporated into routine surveillance.
Collapse
Affiliation(s)
| | - Luis Cabrera-Sosa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Malaria Research Group (MaRCH), Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Erick Figueroa-Ildefonso
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mathijs Mutsaers
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Monsieurs
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Berónica Infante
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher Delgado-Ratto
- Malaria Research Group (MaRCH), Global Health Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Malariology Unit, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
6
|
Kattenberg JH, Monsieurs P, De Meyer J, De Meulenaere K, Sauve E, de Oliveira TC, Ferreira MU, Gamboa D, Rosanas‐Urgell A. Population genomic evidence of structured and connected Plasmodium vivax populations under host selection in Latin America. Ecol Evol 2024; 14:e11103. [PMID: 38529021 PMCID: PMC10961478 DOI: 10.1002/ece3.11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Pathogen genomic epidemiology has the potential to provide a deep understanding of population dynamics, facilitating strategic planning of interventions, monitoring their impact, and enabling timely responses, and thereby supporting control and elimination efforts of parasitic tropical diseases. Plasmodium vivax, responsible for most malaria cases outside Africa, shows high genetic diversity at the population level, driven by factors like sub-patent infections, a hidden reservoir of hypnozoites, and early transmission to mosquitoes. While Latin America has made significant progress in controlling Plasmodium falciparum, it faces challenges with residual P. vivax. To characterize genetic diversity and population structure and dynamics, we have analyzed the largest collection of P. vivax genomes to date, including 1474 high-quality genomes from 31 countries across Asia, Africa, Oceania, and America. While P. vivax shows high genetic diversity globally, Latin American isolates form a distinctive population, which is further divided into sub-populations and occasional clonal pockets. Genetic diversity within the continent was associated with the intensity of transmission. Population differentiation exists between Central America and the North Coast of South America, vs. the Amazon Basin, with significant gene flow within the Amazon Basin, but limited connectivity between the Northwest Coast and the Amazon Basin. Shared genomic regions in these parasite populations indicate adaptive evolution, particularly in genes related to DNA replication, RNA processing, invasion, and motility - crucial for the parasite's survival in diverse environments. Understanding these population-level adaptations is crucial for effective control efforts, offering insights into potential mechanisms behind drug resistance, immune evasion, and transmission dynamics.
Collapse
Affiliation(s)
| | - Pieter Monsieurs
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Julie De Meyer
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
- Present address:
Integrated Molecular Plant physiology Research (IMPRES) and Plants and Ecosystems (PLECO), Department of BiologyUniversity of AntwerpAntwerpBelgium
| | | | - Erin Sauve
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Thaís C. de Oliveira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical MedicineNova University of LisbonLisbonPortugal
| | - Dionicia Gamboa
- Instituto de Medicina Tropical “Alexander von Humboldt”Universidad Peruana Cayetano HerediaLimaPeru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | | |
Collapse
|
7
|
Ruybal-Pesántez S, McCann K, Vibin J, Siegel S, Auburn S, Barry AE. Molecular markers for malaria genetic epidemiology: progress and pitfalls. Trends Parasitol 2024; 40:147-163. [PMID: 38129280 DOI: 10.1016/j.pt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.
Collapse
Affiliation(s)
- Shazia Ruybal-Pesántez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Institute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kirsty McCann
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jessy Vibin
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia
| | | | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alyssa E Barry
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia; Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Institute for Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
8
|
De Meulenaere K, Cuypers B, Gamboa D, Laukens K, Rosanas-Urgell A. A new Plasmodium vivax reference genome for South American isolates. BMC Genomics 2023; 24:606. [PMID: 37821878 PMCID: PMC10568799 DOI: 10.1186/s12864-023-09707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Plasmodium vivax is the second most important cause of human malaria worldwide, and accounts for the majority of malaria cases in South America. A high-quality reference genome exists for Papua Indonesia (PvP01) and Thailand (PvW1), but is lacking for South America. A reference genome specifically for South America would be beneficial though, as P. vivax is a genetically diverse parasite with geographical clustering. RESULTS This study presents a new high-quality assembly of a South American P. vivax isolate, referred to as PvPAM (P. vivax Peruvian AMazon). The genome was obtained from a low input patient sample from the Peruvian Amazon and sequenced using PacBio technology, resulting in a highly complete assembly with 6497 functional genes. Telomeric ends were present in 17 out of 28 chromosomal ends, and additional (sub)telomeric regions are present in 12 unassigned contigs. A comparison of multigene families between PvPAM and the PvP01 genome revealed remarkable variation in vir genes, and the presence of merozoite surface proteins (MSP) 3.6 and 3.7. Three dhfr and dhps drug resistance associated mutations are present in PvPAM, similar to those found in other Peruvian isolates. Mapping of publicly available South American whole genome sequencing (WGS) data to PvPAM resulted in significantly fewer variants and truncated reads compared to the use of PvP01 or PvW1 as reference genomes. To minimize the number of core genome variants in non-South American samples, PvW1 is most suited for Southeast Asian isolates, both PvPAM and PvW1 are suited for South Asian isolates, and PvPAM is recommended for African isolates. Interestingly, non-South American samples still contained the least subtelomeric variants when mapped to PvPAM, indicating high quality of the PvPAM subtelomeric regions. CONCLUSIONS Our findings show that the PvPAM reference genome more accurately represents South American P. vivax isolates in comparison to PvP01 and PvW1. In addition, PvPAM has a high level of completeness, and contains a similar number of annotated genes as PvP01 or PvW1. The PvPAM genome therefore will be a valuable resource to improve future genomic analyses on P. vivax isolates from the South American continent.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Computer Science, University of Antwerp, Antwerp, Belgium.
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Rovira-Vallbona E, Kattenberg JH, Hong NV, Guetens P, Imamura H, Monsieurs P, Chiheb D, Erhart A, Phuc BQ, Xa NX, Rosanas-Urgell A. Molecular surveillance of Plasmodium falciparum drug-resistance markers in Vietnam using multiplex amplicon sequencing (2000-2016). Sci Rep 2023; 13:13948. [PMID: 37626131 PMCID: PMC10457381 DOI: 10.1038/s41598-023-40935-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapies (ACT) is a major challenge for Greater Mekong Subregion countries in their goal to eliminate malaria by 2030. Tools to efficiently monitor drug resistance beyond resource-demanding therapeutic efficacy studies are necessary. A custom multiplex amplicon sequencing assay based on Illumina technology was designed to target the marker of partial resistance to artemisinin (K13), five candidate modulators of artemisinin resistance, the marker of resistance to chloroquine (crt), and four neutral microsatellite loci. The assay was used to genotype 635 P. falciparum-positive blood samples collected across seven provinces of Vietnam and one of Cambodia between 2000 and 2016. Markers of resistance to artemisinin partner-drugs piperaquine (copy number of plasmepsin-2) and mefloquine (copy number of multidrug-resistance 1) were determined by qPCR. Parasite population structure was further assessed using a 101-SNP barcode. Validated mutations of artemisinin partial resistance in K13 were found in 48.1% of samples, first detection was in 2000, and by 2015 prevalence overcame > 50% in Central Highlands and Binh Phuoc province. K13-C580Y variant became predominant country-wide, quickly replacing an outbreak of K13-I543T in Central Highlands. Mutations in candidate artemisinin resistance modulator genes paralleled the trends of K13 mutants, whereas resistance to piperaquine and mefloquine remained low (≈ 10%) by 2015-2016. Genomic tools applied to malaria surveillance generate comprehensive information on dynamics of drug resistance and population structure and reflect drug efficacy profiles from in vivo studies.
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- ISGlobal, Hospital Clínic/Universitat de Barcelona, 08036, Barcelona, Catalonia, Spain
| | | | - Nguyen Van Hong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, 10200, Vietnam
| | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Vrije Universiteit Brussel, Campus Jette, 1090, Brussels, Belgium
- UZ Brussel, Centre for Medical Genetics, 1090, Brussels, Belgium
| | - Pieter Monsieurs
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Driss Chiheb
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Bui Quang Phuc
- National Institute of Malariology, Parasitology and Entomology, Hanoi, 10200, Vietnam
| | - Nguyen Xuan Xa
- National Institute of Malariology, Parasitology and Entomology, Hanoi, 10200, Vietnam
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium.
| |
Collapse
|
10
|
Leonard SR, Mammel MK, Gharizadeh B, Almeria S, Ma Z, Lipman DJ, Torrence ME, Wang C, Musser SM. Development of a targeted amplicon sequencing method for genotyping Cyclospora cayetanensis from fresh produce and clinical samples with enhanced genomic resolution and sensitivity. Front Microbiol 2023; 14:1212863. [PMID: 37396378 PMCID: PMC10311907 DOI: 10.3389/fmicb.2023.1212863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Outbreaks of cyclosporiasis, an enteric illness caused by the parasite Cyclospora cayetanensis, have been associated with consumption of various types of fresh produce. Although a method is in use for genotyping C. cayetanensis from clinical specimens, the very low abundance of C. cayetanensis in food and environmental samples presents a greater challenge. To complement epidemiological investigations, a molecular surveillance tool is needed for use in genetic linkage of food vehicles to cyclosporiasis illnesses, estimation of the scope of outbreaks or clusters of illness, and determination of geographical areas involved. We developed a targeted amplicon sequencing (TAS) assay that incorporates a further enrichment step to gain the requisite sensitivity for genotyping C. cayetanensis contaminating fresh produce samples. The TAS assay targets 52 loci, 49 of which are located in the nuclear genome, and encompasses 396 currently known SNP sites. The performance of the TAS assay was evaluated using lettuce, basil, cilantro, salad mix, and blackberries inoculated with C. cayetanensis oocysts. A minimum of 24 markers were haplotyped even at low contamination levels of 10 oocysts in 25 g leafy greens. The artificially contaminated fresh produce samples were included in a genetic distance analysis based on haplotype presence/absence with publicly available C. cayetanensis whole genome sequence assemblies. Oocysts from two different sources were used for inoculation, and samples receiving the same oocyst preparation clustered together, but separately from the other group, demonstrating the utility of the assay for genetically linking samples. Clinical fecal samples with low parasite loads were also successfully genotyped. This work represents a significant advance in the ability to genotype C. cayetanensis contaminating fresh produce along with greatly expanding the genomic diversity included for genetic clustering of clinical specimens.
Collapse
Affiliation(s)
- Susan R. Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Mark K. Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | | | - Sonia Almeria
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Zhihai Ma
- Chapter Diagnostics, Menlo Park, CA, United States
| | - David J. Lipman
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Mary E. Torrence
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Chunlin Wang
- Chapter Diagnostics, Menlo Park, CA, United States
| | - Steven M. Musser
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
11
|
Trimarsanto H, Amato R, Pearson RD, Sutanto E, Noviyanti R, Trianty L, Marfurt J, Pava Z, Echeverry DF, Lopera-Mesa TM, Montenegro LM, Tobón-Castaño A, Grigg MJ, Barber B, William T, Anstey NM, Getachew S, Petros B, Aseffa A, Assefa A, Rahim AG, Chau NH, Hien TT, Alam MS, Khan WA, Ley B, Thriemer K, Wangchuck S, Hamedi Y, Adam I, Liu Y, Gao Q, Sriprawat K, Ferreira MU, Laman M, Barry A, Mueller I, Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Mohammed R, Yilma D, Pereira DB, Espino FEJ, Chu CS, Vélez ID, Namaik-Larp C, Villegas MF, Green JA, Koh G, Rayner JC, Drury E, Gonçalves S, Simpson V, Miotto O, Miles A, White NJ, Nosten F, Kwiatkowski DP, Price RN, Auburn S. A molecular barcode and web-based data analysis tool to identify imported Plasmodium vivax malaria. Commun Biol 2022; 5:1411. [PMID: 36564617 PMCID: PMC9789135 DOI: 10.1038/s42003-022-04352-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.
Collapse
Affiliation(s)
- Hidayat Trimarsanto
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Roberto Amato
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Edwin Sutanto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Exeins Health Initiative, Jakarta, Indonesia
| | | | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Diego F Echeverry
- International Training and Medical Research Center (CIDEIM), Cali, Colombia
- Departamento de Microbiología, Universidad del Valle, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | | | | | | | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Bridget Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Sabah, Malaysia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Awab G Rahim
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nangarhar Medical Faculty, Nangarhar University, Ministry of Higher Education, Jalalabad, Afghanistan
| | - Nguyen H Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Tran T Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Mohammad S Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Dhaka, Bangladesh
| | - Wasif A Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Dhaka, Bangladesh
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sonam Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Ishag Adam
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Alyssa Barry
- Deakin University, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Victoria, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical, Manaus, Brazil
- Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | | | | | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | - Fe E J Espino
- Research Institute for Tropical Medicine, Manilla, Philippines
| | - Cindy S Chu
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Iván D Vélez
- Malaria Group, Universidad de Antioquia, Medellin, Colombia
| | | | | | | | | | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Eleanor Drury
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sónia Gonçalves
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Victoria Simpson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|