1
|
Yang L, Hu M, Shao J. Integration of Gut Mycobiota and Oxidative Stress to Decipher the Roles of C-Type Lectin Receptors in Inflammatory Bowel Diseases. Immunol Invest 2024; 53:1177-1204. [PMID: 39115960 DOI: 10.1080/08820139.2024.2388164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are two subtypes of inflammatory bowel disease (IBD) with rapidly increased incidence worldwide. Although multiple factors contribute to the occurrence and progression of IBD, the role of intestinal fungal species (gut mycobiota) in regulating the severity of these conditions has been increasingly recognized. C-type lectin receptors (CLRs) on hematopoietic cells, including Dectin-1, Dectin-2, Dectin-3, Mincle and DC-SIGN, are a group of pattern recognition receptors (PRRs) that primarily recognize fungi and mediate defense responses, such as oxidative stress. Recent studies have demonstrated the indispensable role of CLRs in protecting the colon from intestinal inflammation and mucosal damage. METHODS AND RESULTS This review provides a comprehensive overview of the role of CLRs in the pathogenesis of IBD. Given the significant impact of mycobiota and oxidative stress in IBD, this review also discusses recent advancements in understanding how these factors exacerbate or ameliorate IBD. Furthermore, the latest developments in CLR-guided IBD therapy are examined to highlight the modulation of CLRs in fungal recognition and oxidative burst during the IBD process. CONCLUSION This review emphasizes the importance of CLRs in IBD, offering new perspectives on the etiology and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
| | - Min Hu
- Department of pathology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, Anhui 230012, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, P. R. China
| |
Collapse
|
2
|
Kong MW, Yu Y, Wang P, Wan Y, Gao Y, Zhang CX. Advances in the research of intestinal fungi in Crohn's disease. World J Gastroenterol 2024; 30:4318-4323. [PMID: 39492826 PMCID: PMC11525856 DOI: 10.3748/wjg.v30.i39.4318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This article reviews of the original research published by Wu et al in the World Journal of Gastroenterology, delving into the pivotal role of the gut microbiota in the pathogenesis of Crohn's disease (CD). Insights were gained from fecal microbiota transplantation (FMT) in mouse models, revealing the intricate interplay between the gut microbiota, mesenteric adipose tissue (MAT), and creeping fat. The study uncovered the characteristics of inflammation and fibrosis in the MAT and intestinal tissues of patients with CD; moreover, through the FMT mouse model, it observed the impact of samples from healthy patients and those with CD on symptoms. The pathogenesis of CD is complex, and its etiology remains unclear; however, it is widely believed that gut microbiota dysbiosis plays a significant role. Recently, with the development and application of next-generation sequencing technology, research on the role of fungi in the pathogenesis and chronicity of CD has deepened. This editorial serves as a supplement to the research by Wu et al who discussed advances related to the study of fungi in CD.
Collapse
Affiliation(s)
- Mo-Wei Kong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Peng Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Chun-Xiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
3
|
Gong M, Yu H, Qu H, Li Z, Liu D, Zhao X. Global research trends and hotspots on human intestinal fungi and health: a bibliometric visualization study. Front Cell Infect Microbiol 2024; 14:1460570. [PMID: 39483119 PMCID: PMC11525014 DOI: 10.3389/fcimb.2024.1460570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Background This article employs bibliometric methods and visual maps to delineate the research background, collaborative relationships, hotspots, and trends in the study of gut fungi in human diseases and health. Methods Publications related to human gut fungi were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, R software and Microsoft Excel were employed to generate visual representations illustrating the contributions made by countries/regions, authors, organizations, and journals. Employing VOSviewer and CiteSpace, we conducted a comprehensive analysis of the retrieved publications, revealing underlying tendencies, research hotspots, and intricate knowledge networks. Results This study analyzed a total of 3,954 publications. The United States ranks first in the number of published papers and has the highest number of citations and h-index. Mostafa S Elshahed is the most prolific author. The University of California System is the institution that published the most papers. Frontiers In Microbiology is the journal with the largest number of publications. Three frequently co-cited references have experienced a citation burst lasting until 2024. Conclusion Advancements in sequencing technologies have intensified research into human gut fungi and their health implications, shifting the research focus from gut fungal infections towards microbiome science. Inflammatory bowel diseases and Candida albicans have emerged as pivotal areas of interest in this endeavor. Through this study, we have gained a deeper insight into global trends and frontier hotspots within this field, thereby enhancing our understanding of the intricate relationship between gut fungi and human health.
Collapse
Affiliation(s)
- Ming Gong
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhexian Li
- Dalian Medical University, Dalian, China
| | - Di Liu
- First Clinical Faculty, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhao
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Gentili M, Sabbatini S, Nunzi E, Lusenti E, Cari L, Mencacci A, Ballet N, Migliorati G, Riccardi C, Ronchetti S, Monari C. Glucocorticoid-Induced Leucine Zipper Protein and Yeast-Extracted Compound Alleviate Colitis and Reduce Fungal Dysbiosis. Biomolecules 2024; 14:1321. [PMID: 39456254 PMCID: PMC11506796 DOI: 10.3390/biom14101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, poorly understood pathogenesis and lack long-lasting effective treatments. Recent research suggests that intestinal fungal dysbiosis may play a role in IBD development. This study investigates the effects of the glucocorticoid-induced leucine zipper protein (GILZp)", known for its protective role in gut mucosa, and a yeast extract (Py) with prebiotic properties, either alone or combined, in DSS-induced colitis. Both treatments alleviated symptoms via overlapping or distinct mechanisms. In particular, they reduced the transcription levels of pro-inflammatory cytokines IL-1β and TNF-α, as well as the expression of the tight junction protein Claudin-2. Additionally, GILZp increased MUC2 transcription, while Py reduced IL-12p40 and IL-6 levels. Notably, both treatments were effective in restoring the intestinal burden of clinically important Candida and related species. Intestinal mycobiome analysis revealed that they were able to reduce colitis-associated fungal dysbiosis, and this effect was mainly the result of a decreased abundance of the Meyerozima genus, which was dominant in colitic mice. Overall, our results suggest that combined treatment regimens with GILZp and Py could represent a new strategy for the treatment of IBD by targeting multiple mechanisms, including the fungal dysbiosis.
Collapse
Affiliation(s)
- Marco Gentili
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Eleonora Lusenti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Luigi Cari
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Antonella Mencacci
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| | - Nathalie Ballet
- Lesaffre Institute of Science & Technology, Lesaffre International, 59700 Marcq-en-Baroeul, France;
| | - Graziella Migliorati
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Carlo Riccardi
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Simona Ronchetti
- Department of Medicine and Surgery, Pharmacology Division, University of Perugia, 06132 Perugia, Italy (E.L.); (L.C.); (G.M.); (C.R.)
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Division, University of Perugia, 06132 Perugia, Italy; (S.S.); (A.M.)
| |
Collapse
|
5
|
Li Y, Huang M, Cardinale S, Su Y, Peters DE, Slusher BS, Zhu X. Dectin-1 as a therapeutic target for inflammatory bowel disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:237-264. [PMID: 39521602 DOI: 10.1016/bs.apha.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses chronic inflammatory conditions of the distal gastrointestinal tract, including Crohn's disease and ulcerative colitis. This chapter explores the potential of Dendritic cell-associated C-type lectin-1 (Dectin-1), a pattern recognition receptor, as a therapeutic target for IBD. We delve into the multifaceted roles of Dectin-1 in immune response modulation, focusing on its interactions with the gut microbiota and immune system. Key sections include an examination of intestinal dysbiosis and its impact on IBD, highlighting the critical role of fungal dysbiosis and immune responses mediated by Dectin-1. The chapter discusses the dual functions of Dectin-1 in maintaining gut homeostasis and its contribution to disease pathogenesis through interactions with the gut's fungal community. Furthermore, the genetic and molecular mechanisms underpinning Dectin-1's role in IBD susceptibility are explored, alongside its signaling pathways and their effects on immune modulation. We also present therapeutic strategies targeting Dectin-1, including innovative drug delivery systems that leverage its natural binding affinity for β-glucans, enhancing targeted delivery to inflamed tissues. The chapter underscores the potential of dietary modulation of Dectin-1 pathways to restore gut microbiota balance and suggests future research directions to fully exploit Dectin-1's therapeutic potential in managing IBD. By elucidating the complex interplay between Dectin-1 and the gut microbiota, this chapter provides insights into novel therapeutic approaches aimed at mitigating IBD symptoms and improving patient outcomes.
Collapse
Affiliation(s)
- Yannan Li
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Santiago Cardinale
- Department of Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yu Su
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Diane E Peters
- Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Barbara S Slusher
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
6
|
Alghamdi KS, Kassar RH, Farrash WF, Obaid AA, Idris S, Siddig A, Shakoori AM, Alshehre SM, Minshawi F, Mujalli A. Key Disease-Related Genes and Immune Cell Infiltration Landscape in Inflammatory Bowel Disease: A Bioinformatics Investigation. Int J Mol Sci 2024; 25:9751. [PMID: 39273699 PMCID: PMC11396460 DOI: 10.3390/ijms25179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory Bowel Diseases (IBD), which encompass ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic inflammation and tissue damage of the gastrointestinal tract. This study aimed to uncover novel disease-gene signatures, dysregulated pathways, and the immune cell infiltration landscape of inflamed tissues. Eight publicly available transcriptomic datasets, including inflamed and non-inflamed tissues from CD and UC patients were analyzed. Common differentially expressed genes (DEGs) were identified through meta-analysis, revealing 180 DEGs. DEGs were implicated in leukocyte transendothelial migration, PI3K-Akt, chemokine, NOD-like receptors, TNF signaling pathways, and pathways in cancer. Protein-protein interaction network and cluster analysis identified 14 central IBD players, which were validated using eight external datasets. Disease module construction using the NeDRex platform identified nine out of 14 disease-associated genes (CYBB, RAC2, GNAI2, ITGA4, CYBA, NCF4, CPT1A, NCF2, and PCK1). Immune infiltration profile assessment revealed a significantly higher degree of infiltration of neutrophils, activated dendritic cells, plasma cells, mast cells (resting/activated), B cells (memory/naïve), regulatory T cells, and M0 and M1 macrophages in inflamed IBD tissue. Collectively, this study identified the immune infiltration profile and nine disease-associated genes as potential modulators of IBD pathogenesis, offering insights into disease molecular mechanisms, and highlighting potential disease modulators and immune cell dynamics.
Collapse
Affiliation(s)
- Kawthar S Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al-Batin 39511, Saudi Arabia
| | - Rahaf H Kassar
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Ahmad A Obaid
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Shakir Idris
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Alaa Siddig
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Afnan M Shakoori
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Sallwa M Alshehre
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Faisal Minshawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| |
Collapse
|
7
|
Chen H, Li Q, Gao T, Wang Y, Ren X, Liu S, Zhang S, Zhou P, Lyu J, Bai H, Wang Y. Causal role of immune cells in inflammatory bowel disease: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37537. [PMID: 38579066 PMCID: PMC10994490 DOI: 10.1097/md.0000000000037537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/16/2024] [Indexed: 04/07/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by an inflammatory response closely related to the immune system, but the relationship between inflammation and IBD remains unclear. We performed a comprehensive 2-sample Mendelian randomization (MR) analysis to determine the causal relationship between immune cell characteristics and IBD. Using publicly available genetic data, we explored the relationship between 731 immune cell characteristics and IBD risk. Inverse-variance weighting was the primary analytical method. To test the robustness of the results, we used the weighted median-based, MR-Egger, simple mode, and mode-based methods. Finally, we performed a reverse MR analysis to assess the possibility of reverse causality. We identified suggestive associations between 2 immune cell traits and IBD risk (P = 4.18 × 10-5 for human leukocyte antigen-DR on CD14+ monocytes, OR: 0.902; 95% CI: 0.859-0.947; for CD39+ CD4+ T cells, P = 6.24 × 10-5; OR: 1.042; 95% CI: 1.021-1.063). Sensitivity analysis results of these immune cell traits were consistent. In reverse MR analysis, we found no statistically significant association between IBD and these 2 cell traits. Our study demonstrates the close connection between immune cells and IBD using MR, providing guidance for future clinical and basic research.
Collapse
Affiliation(s)
- Haoyu Chen
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Qi Li
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Tianyu Gao
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Yuhua Wang
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Xuetong Ren
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Shaowei Liu
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Shixiong Zhang
- School of Graduate, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingping Zhou
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Jingjing Lyu
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Haiyan Bai
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yangang Wang
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
- Department of Gastroenterology, Beijing University of Chinese Medicine, Third Affiliated Hospital, Beijing, China
| |
Collapse
|
8
|
Bai J, Wang Y, Li F, Wu Y, Chen J, Li M, Wang X, Lv B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci Prog 2024; 107:368504241253709. [PMID: 38778725 PMCID: PMC11113063 DOI: 10.1177/00368504241253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence, such as Crohn's disease and ulcerative colitis. The accurate etiology and pathogenesis of IBD remain unclear, and it is generally believed that it is related to genetic susceptibility, gut microbiota, environmental factors, immunological abnormalities, and potentially other factors. Currently, the mainstream therapeutic drugs are amino salicylic acid agents, corticosteroids, immunomodulators, and biological agents, but the remission rates do not surpass 30-60% of patients in a real-life setting. As a consequence, there are many studies focusing on emerging drugs and bioactive ingredients that have higher efficacy and long-term safety for achieving complete deep healing. This article begins with a review of the latest, systematic, and credible summaries of the pathogenesis of IBD. In addition, we provide a summary of the current treatments and drugs for IBD. Finally, we focus on the therapeutic effects of emerging drugs such as microRNAs and lncRNAs, nanoparticles-mediated drugs and natural products on IBD and their mechanisms of action.
Collapse
Affiliation(s)
- Junyi Bai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuhao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyao Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Legaki E, Koutouratsas T, Theocharopoulos C, Lagkada V, Gazouli M. Polymorphisms in CLEC5A and CLEC7A genes modify risk for inflammatory bowel disease. Ann Gastroenterol 2024; 37:64-70. [PMID: 38223252 PMCID: PMC10785015 DOI: 10.20524/aog.2024.0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) seems to arise from an interplay between genetic and environmental factors. CLEC5A and CLEC7A genes code for 2 members of the C-type lectin receptor superfamily, which participate in the immune response against various pathogens, mediating inflammatory signaling. CLEC5A polymorphisms have been linked to the risk of Crohn's disease (CD), whereas CLEC7A has been implicated in fungal dysbiosis, chemically induced colitis in mice and undertreated ulcerative colitis (UC) in humans. This study aimed to explore how specific CLEC5A and CLEC7A polymorphisms contribute to the development of CD and UC. Methods One hundred twelve CD patients, 94 UC patients and 164 sex- and age- matched healthy individuals were genotyped for the single nucleotide polymorphisms rs2078178 and rs16910631 of the CLEC7A gene, and rs1285933 of the CLEC5A gene. Results The CLEC7A rs2078178 AA genotype was more frequent in UC patients compared to healthy individuals, The CLEC7A rs16910631 CT genotype was significantly associated with UC risk compared to healthy individuals, while there was no statistical correlation with CD. The CLEC5A rs1285933 GA genotype was found to be protective against UC and CD, and the AA genotype against CD. Carriers of the rs1285933 A allele appeared to have reduced susceptibility to CD, implying that the presence of the A allele could be protective against CD development. Conclusions This is the first study to correlate the CLEC5A rs1285933 polymorphism with the risk for UC. The rs2078178 AA genotype and the CLEC7A rs16910631 CT could be promising biomarkers for UC susceptibility.
Collapse
Affiliation(s)
- Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Tilemachos Koutouratsas
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Charalampos Theocharopoulos
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Vivian Lagkada
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Greece (Evangelia Legaki, Tilemachos Koutouratsas, Charalampos Theocharopoulos, Vivian Lagkada, Maria Gazouli)
| |
Collapse
|
10
|
Li XH, Luo MM, Wang ZX, Wang Q, Xu B. The role of fungi in the diagnosis of colorectal cancer. Mycology 2023; 15:17-29. [PMID: 38558845 PMCID: PMC10977015 DOI: 10.1080/21501203.2023.2249492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 04/04/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent tumour with high morbidity rates worldwide, and its incidence among younger populations is rising. Early diagnosis of CRC can help control the associated mortality. Fungi are common microorganisms in nature. Recent studies have shown that fungi may have a similar association with tumours as bacteria do. As an increasing number of tumour-associated fungi are discovered, this provides new ideas for the diagnosis and prognosis of tumours. The relationship between fungi and colorectal tumours has also been recently identified by scientists. Therefore, this paper describes the limitations and prospects of the application of fungi in diagnosing CRC and predicting CRC prognosis.
Collapse
Affiliation(s)
- Xu-Huan Li
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming-Ming Luo
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zu-Xiu Wang
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Wang
- Department of Health Statistics, School of PubliHealth and Health Management, Gannan Medical University, Ganzhou, China
| | - Bin Xu
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
11
|
Sun M, Ju J, Xu H, Wang Y. Intestinal fungi and antifungal secretory immunoglobulin A in Crohn's disease. Front Immunol 2023; 14:1177504. [PMID: 37359518 PMCID: PMC10285161 DOI: 10.3389/fimmu.2023.1177504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The human gastrointestinal tract harbors trillions of commensal microorganisms. Emerging evidence points to a possible link between intestinal fungal dysbiosis and antifungal mucosal immunity in inflammatory bowel disease, especially in Crohn's disease (CD). As a protective factor for the gut mucosa, secretory immunoglobulin A (SIgA) prevents bacteria from invading the intestinal epithelium and maintains a healthy microbiota community. In recent years, the roles of antifungal SIgA antibodies in mucosal immunity, including the regulation of intestinal immunity binding to hyphae-associated virulence factors, are becoming increasingly recognized. Here we review the current knowledge on intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals and in patients with CD, discuss the factors governing antifungal SIgA responses in the intestinal mucosa in the latter group, and highlight potential antifungal vaccines targeting SIgA to prevent CD.
Collapse
|