1
|
Huang B, Tang P, Liu Y, Liu F, Zheng Y, Yang X, Zhang X, Xie H, Lin L, Lin B, Lin B. Xuefu Zhuyu decoction alleviates deep vein thrombosis through inhibiting the activation of platelets and neutrophils via sirtuin 1/nuclear factor kappa-B pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118485. [PMID: 38908490 DOI: 10.1016/j.jep.2024.118485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuefu Zhuyu Decoction (XZD), a renowned traditional Chinese medicine prescription, is widely employed for the management of conditions characterized by qi-stagnation and blood stasis. Although its anti-thrombotic effect on deep vein thrombosis (DVT) patients has been clinically observed, the underlying mechanism remains largely unexplored. AIM OF THE STUDY Our aim was to investigate the mechanisms by which XZD exerted its effect on DVT. MATERIALS AND METHODS The ultra performance liquid chromatography (UPLC) technique was employed to evaluate quality of XZD. To examine the effect of XZD on DVT, a DVT rat model with inferior vena cava (IVC) stenosis was established. The 4D-label-free proteomics approach was then utilized to uncover the possible mechanisms of XZD against DVT. Based on proteomics, citrullinated histone H3 (CitH3), along with serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) were observed the inhibitory activity of XZD on neutrophil activation. Subsequently, the marker of platelet activation, specifically glycoprotein IIb (CD41) and glycoprotein IIIa (CD61), were assessed along with the secretion of von Willebrand factor (vWF) to investigate the inhibitory activity of XZD on platelet activation. Finally, we explored the impact of XZD on the sirtuin 1 (SIRT1)/nuclear factor kappa-B (NF-κB) pathway, which was associated with the activation of platelets and neutrophils. RESULTS Eight distinct components were identified for the quality control of XZD. XZD effectively reduced thrombus weight and length in DVT rats, without affecting the coagulation function or hematological parameters in the systemic circulation. Proteomics analysis revealed that XZD alleviated DVT by inhibiting the activation of platelets and neutrophils. The protein expression of CitH3, along with serum levels of TNF-α and IL-1β, were reduced in XZD-treated DVT rats. Similarly, protein expressions of CD41 and CD61, along with the release of vWF, were markedly down-regulated in XZD-treated DVT rats. Finally, treatment with XZD resulted in an up-regulation of SIRT1 protein expression and a down-regulation of both acetylated NF-κB/p65 and phosphorylated NF-κB/p65 protein expressions in endothelium. CONCLUSIONS XZD alleviates DVT by inhibiting the activation of platelets and neutrophils at the injured endothelium via the regulation of SIRT1/NF-κB pathway.
Collapse
Affiliation(s)
- Boning Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Ping Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Youchen Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Fangle Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Yuying Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Xinrong Yang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Xiubing Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Huiyi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Liuqing Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China
| | - Bingqing Lin
- School of Mathematical Sciences, Shenzhen University, Shenzhen, Guangdong, China.
| | - Baoqin Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangdong, China.
| |
Collapse
|
2
|
Zhu N, Liu R, Xu M, Li Y. The Potential of Bioactive Fish Collagen Oligopeptides against Hydrogen Peroxide-Induced NIH/3T3 and HUVEC Damage: The Involvement of the Mitochondria. Nutrients 2024; 16:1004. [PMID: 38613037 PMCID: PMC11013636 DOI: 10.3390/nu16071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1β (IL-1β), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Zhang L, Yang Z, Li X, Hua Y, Fan G, He F. Anti-atherosclerotic effects of naringenin and quercetin from Folium Artemisiae argyi by attenuating Interleukin-1 beta (IL-1β)/ matrix metalloproteinase 9 (MMP9): network pharmacology-based analysis and validation. BMC Complement Med Ther 2023; 23:378. [PMID: 37880698 PMCID: PMC10601115 DOI: 10.1186/s12906-023-04223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Effective components and related target genes of Folium Artemisiae argyi were screened from Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform. The therapeutic targets of atherosclerosis were searched in the MalaCards and OMIM databases. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in WebGestalt online and verified according to ClueGo and Pedia apps in Cytoscape. Then, the protein-protein interaction network was analyzed using the STRING database and constructed using Cytoscape. Differential expression of target genes was identified in GSE9128 and GSE71226 by GEO2R. And then, molecular docking was performed using the Molecular Operating Environment. Finally, we validated the protein expression of Interleukin-6 (IL-6)/IL-1β /MMP9 by qRT-PCR and Western blot in Raw264.7 which was induced by LPS. A total of 232 potential target genes and 8 ingredients of Folium Artemisiae argyi were identified. Quercetin and naringenin are potential candidate bioactive agents in treating atherosclerosis. Vascular endothelial growth factor (VEGFA), MMP9 and IL-1β could be potential target genes. KEGG analysis demonstrated that the fluid shear stress and atherosclerosis pathway play a crucial role in the anti-atherosclerosis effect of Folium Artemisiae argyi. Gene Expression Omnibus (GEO) validation demonstrated that VEGFA was downregulated, while MMP9 and IL-1β were upregulated in patients with atherosclerosis. Molecular docking suggested that only MMP9 had a good combination with quercetin. The cell experiment results suggested that naringenin and quercetin have strong anti-inflammation effects, and significantly inhibit the expression of MMP9. Practical ApplicationsArtemisiae argyi is a traditional Chinese herbal medicine that has been widely used for its antibacterial and anti-inflammatory effects. This research demonstrated the bioactive ingredients, potential targets, and molecular mechanism of Folium Artemisiae argyi in treating atherosclerosis. It also suggests a reliable approach in investigating the therapeutic effect of traditional Chinese herbal medicine in treating Atherosclerotic cardiovascular disease (ASCVD).
Collapse
Affiliation(s)
- Lei Zhang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, 438000, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xinyi Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, 438000, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, 438000, China.
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
4
|
Molecular encapsulation of bioactive ingredients from Xuefu Zhuyu decoction by cyclodextrin-assisted extraction. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Qi J, Han W, Zhong N, Gou Q, Sun C. Integrated analysis of miRNA-mRNA regulatory network and functional verification of miR-338-3p in coronary heart disease. Funct Integr Genomics 2022; 23:16. [PMID: 36562844 DOI: 10.1007/s10142-022-00941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Coronary heart disease is a cardiovascular disease with high morbidity and mortality. Although great progress has been made in treatment, the prognosis is still very poor. Therefore, this project aims to screen potential diagnostic markers and therapeutic targets related to the progression of coronary heart disease. A total of 94 overlapping differentially expressed mRNAs and 70 differentially expressed miRNAs were identified from GSE20681, GSE12288, GSE49823, and GSE105449. Through a series of bioinformatics methods and experiment, we obtained 5 core miRNA-mRNA regulatory pairs, and selected miR-338-3p/RPS23 for functional analysis. Moreover, we found that RPS23 directly targets miR-338-3p by dual luciferase assay, western, and qPCR. And the expression of miR-338-3p and RPS23 is negatively correlated. The AUC value of miR-338-3p is 0.847. Downregulation of miR-338-3p can significantly inhibit the proliferation and migration of HUVEC. On the contrary, overexpression of miR-338-3p promoted the proliferation and migration of HUVEC. In addition, the interference of RPS23 expression can reverse the regulation of miR-338-3p on HUVEC proliferation. In conclusion, miR-338-3p/RPS23 may be involved in the progression of coronary heart disease, and miR-338-3p may be a diagnostic biomarker and therapeutic target for coronary heart disease.
Collapse
Affiliation(s)
- Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China.,Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenqi Han
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Nier Zhong
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Qiling Gou
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Chaofeng Sun
- Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
6
|
The Improvement of Cardiac and Endothelial Functions of Xue-Fu-Zhu-Yu Decoction for Patients with Acute Coronary Syndrome: A Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2671343. [PMID: 35186096 PMCID: PMC8853789 DOI: 10.1155/2022/2671343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
Abstract
Background Xue-Fu-Zhu-Yu decoction (XFZYD) is a traditional Chinese prescription that has been used to treat patients with blood stasis in China for many years. The present study aimed to evaluate the improvement of cardiac and endothelial functions of XFZYD for patients with acute coronary syndrome (ACS) through a systematic review and meta-analysis. Methods Six databases were searched to collect RCTs related to the treatment of XFZYD for ACS. The primary outcomes were cardiac and endothelial functions, including the levels of left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), and left ventricular end-systolic diameter (LVESD) in echocardiography, as well as the changes in the levels of nitric oxide (NO), endothelin-1 (ET-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in the serum. The secondary outcomes were the blood levels of oxidative damage markers (including superoxide dismutase (SOD) and malondialdehyde (MDA)), C-reactive protein (CRP), brain natriuretic peptide (BNP), creatine kinase-MB (CK-MB), and cardiac troponin I (cTnI) as well as the incidence of adverse drug reactions (ADRs). Weighted mean difference (WMD) was estimated for all the outcomes with the random effects model. This type of analysis was conducted in the subgroups of the ACS subtypes, and the methodological quality was assessed using the handbook of Cochrane Collaboration. Results A total of 1,658 records were identified, and 16 randomized controlled trials (1,171 patients) were included. The primary outcomes suggested that XFZYD combined with routine treatment improved LVEF, reduced LVEDD and LVESD, and also improved the serum levels of NO, and reduced the levels of ET-1 and ICAM-1. XFZYD combination therapy significantly ameliorated the blood levels of SOD, MDA, BNP, CK-MB, and cTnI. However, the results indicated no significant difference between XFZYD plus routine treatment and routine treatment for the levels of VCAM-1 and CRP. Moreover, all the ADRs reported in the included studies were slight and the patients recovered soon. Conclusions The present study suggested that XFZYD may improve the cardiac and endothelial functions of ACS patients without serious ADRs. However, based on the mediocre methodological quality, the aforementioned conclusion should be confirmed in a multicenter, large-scale, and accurately designed clinical trial.
Collapse
|
7
|
Yu H, Chai X, Geng WC, Zhang L, Ding F, Guo DS, Wang Y. Facile and label-free fluorescence strategy for evaluating the influence of bioactive ingredients on FMO3 activity via supramolecular host-guest reporter pair. Biosens Bioelectron 2021; 192:113488. [PMID: 34265522 DOI: 10.1016/j.bios.2021.113488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
Screening inhibitors of flavin monooxygenase 3 (FMO3) is very important for treating trimethylamine N-oxide (TMAO) derived thrombotic diseases. Herein, focusing on Xuefu Zhuyu decoction (XFZYD) as a Chinese traditional medicine with antithrombotic efficacy, a facile and label-free fluorescence strategy was developed for evaluating the influence of the bioactive ingredients in XFZYD on FMO3 activity through indicator displacement assay. To this end, the optimized supramolecular host-guest (p-sulfonatocalix[4]arene-oxazine 1) reporter pair and FMO3 catalytic system were exploited to determine the influence of the bioactive compounds in XFZYD on the conversion from TMA to TMAO. From the nine compounds tested, naringin, paeoniflorin, β-ecdysterone, 18β-glycyrrhizic acid, amygdalin, albiflorin, and saikosaponin A downregulated FMO3 activity and reduced TMAO biosynthesis. Moreover, molecular docking was successfully applied to simulate the optimal conformation of a receptor-ligand complex between FMO3 and all tested compounds except for β-ecdysterone. Therefore, this approach provides a novel and promising strategy for screening FMO3 inhibitors from Chinese traditional medicine by supramolecular sensing.
Collapse
Affiliation(s)
- Huijuan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Lei Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fei Ding
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin, 300071, China.
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|