1
|
Zhao H, Duan R, Wang Q, Hu X, Zhao Q, Wu W, Jiang R, Gong S, Wang L, Liu J, Deng J, Liang H, Miao Y, Yuan P. MiR-122-5p as a potential regulator of pulmonary vascular wall cell in idiopathic pulmonary arterial hypertension. Heliyon 2023; 9:e22922. [PMID: 38144299 PMCID: PMC10746431 DOI: 10.1016/j.heliyon.2023.e22922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
MicroRNAs (miRNAs) are versatile regulators of pulmonary arterial remodeling in idiopathic pulmonary arterial hypertension (IPAH). We herein aimed to characterize miRNAs in peripheral blood mononuclear cell (PBMC) and plasma exosomes, and investigate specific miRNA expression in pulmonary artery cells and lung tissues in IPAH. A co-dysregulated miRNA was identified from the miRNA expression profiles of PBMC and plasma exosomes in IPAH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the potential function of differentially expressed miRNAs. Real-time quantitative reverse transcription polymerase chain reaction was used to validate the expression of specific miRNAs in hypoxia-induced pulmonary microvascular endothelial cells (PMECs), pulmonary artery smooth muscle cells (PASMCs), pericyte cells (PCs), and lung tissues of patients with IPAH and rats. Finally, the miRNA-mRNA mechanisms of miR-122-5p were predicted. MiR-122-5p was the only co-upregulated miRNA in PBMC and plasma exosomes in patients with IPAH. Functional analysis of differentially expressed miRNAs revealed associations with the GO terms "transcription, DNA-templated," "cytoplasm," and "metal ion binding" in both PBMC and plasma exosomes, KEGG pathway MAPK signaling in PBMC, and KEGG-pathway human papillomavirus infection in plasma exosomes. Hypoxic PMECs and PCs, lung tissue of patients with IPAH, and rats showed increased expression of miR-122-5p, but hypoxic PASMCs showed decreased expression. And miR-122-5p mimics and inhibitor affected cell proliferation. Finally, miR-122-5p was found to potentially target DLAT (in lung tissue) and RIMS1 (in PMECs) in IPAH. According to the dual-luciferase assay, miR-122-5p bound to DLAT or RIMS1. In studies, DLAT imbalance was associated with cell proliferation and migration, RIMS1 is differentially expressed in cancer and correlated with cancer prognosis. Our findings suggest that the miR-122-5p is involved in various biological functions in the adjacent vascular wall cells in IPAH.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ruowang Duan
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qian Wang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jie Deng
- Southern Medical University, Guangzhou, 510000, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu Province, 215125, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
2
|
Jiang CY, Wu LW, Liu YW, Feng B, Ye LC, Huang X, He YY, Shen Y, Zhu YF, Zhou XL, Jiang DJ, Qi HK, Zhang H, Yan Y. Identification of ACKR4 as an immune checkpoint in pulmonary arterial hypertension. Front Immunol 2023; 14:1153573. [PMID: 37449198 PMCID: PMC10337759 DOI: 10.3389/fimmu.2023.1153573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Objective Inflammation is recognized as a contributor in the development of pulmonary arterial hypertension (PAH), and the recruitment and functional capacity of immune cells are well-orchestrated by chemokines and their receptors. This study is aimed at identification of critical chemokines in the progression of PAH via transcriptomic analysis. Methods Differentially expressed genes (DEGs) from lungs of PAH patients were achieved compared to controls based on Gene Expression Omnibus (GEO) database. Gene set enrichment analysis (GSEA) was applied for functional annotation and pathway enrichement. The abundance of immune cells was estimated by the xCell algorithm. Weighted correlation network analysis (WGCNA) was used to construct a gene expression network, based on which a diagnostic model was generated to determine its accuracy to distinguish PAH from control subjects. Target genes were then validated in lung of hypoxia-induce pulmonary hypertension (PH) mouse model. Results ACKR4 (atypical chemokine receptor 4) was downregulated in PAH lung tissues in multiple datasets. PAH relevant biological functions and pathways were enriched in patients with low-ACKR4 level according to GSEA enrichment analysis. Immuno-infiltration analysis revealed a negative correlation of activated dendritic cells, Th1 and macrophage infiltration with ACKR4 expression. Three gene modules were associated with PAH via WGCNA analysis, and a model for PAH diagnosis was generated using CXCL12, COL18A1 and TSHZ2, all of which correlated with ACKR4. The ACKR4 expression was also downregulated in lung tissues of our experimental PH mice compared to that of controls. Conclusions The reduction of ACKR4 in lung tissues of human PAH based on transcriptomic data is consistent with the alteration observed in our rodent PH. The correlation with immune cell infiltration and functional annotation indicated that ACKR4 might serve as a protective immune checkpoint for PAH.
Collapse
Affiliation(s)
- Chen-Yu Jiang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Wei Wu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Wei Liu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Feng
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin-Cai Ye
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Huang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Yi Shen
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Fan Zhu
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Liang Zhou
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dai-Ji Jiang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Kun Qi
- School of Biomedical Engineering, Shanghaitech University, Shanghai, China
| | - Hao Zhang
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yan
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center (SCMC), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Yang Z, Li P, Yuan Q, Wang X, Ma HH, Zhuan B. Inhibition of miR-4640-5p alleviates pulmonary hypertension in chronic obstructive pulmonary disease patients by regulating nitric oxide synthase 1. Respir Res 2023; 24:92. [PMID: 36964568 PMCID: PMC10039540 DOI: 10.1186/s12931-023-02387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disease characterized by vasoconstriction and vascular remodeling, leading to right ventricular failure and death. PH is a common complication of chronic obstructive pulmonary disease (COPD). Accumulating evidence demonstrate that microRNAs participate in the pathobiology of PH in COPD patients. In this study, we aimed to evaluate the expression and function of microRNA-4640-5p (miR-4640-5p) in PH. METHODS The mRNA and protein levels were determined by quantitative polymerase chain reaction (qPCR) and western blot, separately. Functional assays and western blot were performed to determine the effects of miR-4640-5p and NOS1 on cell growth, migration. Besides, the dual-luciferase reporter assays were used to validate miR-4640-5p and NOS1 interactions. RESULTS We found that miR-4640-5p expression was significantly higher in the lung tissues of COPD-PH patients than in the healthy controls while higher expression of miR-4640-5p was correlated with more severe COPD-PH. By using pulmonary artery smooth muscle cell (PASMC) in in vitro assays, we demonstrated that inhibition of miR-4640-5p suppressed cell proliferation and migration of PASMC via regulating mTOR/S6 signaling. Bioinformatics analysis and validation experiments revealed that nitric oxide synthase 1 (NOS1) was a direct downstream target of miR-4640-5p. Overexpression of NOS1 partially antagonized the effect of miR-4640-5p in regulating PASMC cell proliferation and migration. In addition, our findings suggested that miR-4640-5p/NOS1 axis regulated mitochondrial dynamics in PASMCs. Furthermore, in the hypoxia-induced PH rat model, inhibition of miR-4640-5p ameliorated PH with reduced right ventricular systolic pressure and Fulton index. CONCLUSIONS miR-4640-5p regulates PH via targeting NOS1, which provides a potential diagnostic biomarker and therapeutic target for COPD-PH patients.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, 215153, Jiangsu, China
| | - Ping Li
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, The Affiliated Hospital of NingXia Medical University, Ningxia, Yinchuan, 750001, China
| | - Qun Yuan
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, 215153, Jiangsu, China
| | - Xi Wang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, 215153, Jiangsu, China
| | - Hong-Hong Ma
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, The Affiliated Hospital of NingXia Medical University, Ningxia, Yinchuan, 750001, China
| | - Bing Zhuan
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, The Affiliated Hospital of NingXia Medical University, Ningxia, Yinchuan, 750001, China.
| |
Collapse
|
4
|
Li Q, Hujiaaihemaiti M, Wang J, Uddin MN, Li MY, Aierken A, Wu Y. Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4153-4177. [PMID: 36899621 DOI: 10.3934/mbe.2023194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND The deregulated genetic factors are critically associated with idiopathic pulmonary arterial hypertension (IPAH) development and progression. However, the identification of hub-transcription factors (TFs) and miRNA-hub-TFs co-regulatory network-mediated pathogenesis in IPAH remains lacking. METHODS We used GSE48149, GSE113439, GSE117261, GSE33463, and GSE67597 for identifying key genes and miRNAs in IPAH. We used a series of bioinformatics approaches, including R packages, protein-protein interaction (PPI) network, and gene set enrichment analysis (GSEA) to identify the hub-TFs and miRNA-hub-TFs co-regulatory networks in IPAH. Also, we employed a molecular docking approach to evaluate the potential protein-drug interactions. RESULTS We found that 14 TFs encoding genes, including ZNF83, STAT1, NFE2L3, and SMARCA2 are upregulated, and 47 TFs encoding genes, including NCOR2, FOXA2, NFE2, and IRF5 are downregulated in IPAH relative to the control. Then, we identified the differentially expressed 22 hub-TFs encoding genes, including four upregulated (STAT1, OPTN, STAT4, and SMARCA2) and 18 downregulated (such as NCOR2, IRF5, IRF2, MAFB, MAFG, and MAF) TFs encoding genes in IPAH. The deregulated hub-TFs regulate the immune system, cellular transcriptional signaling, and cell cycle regulatory pathways. Moreover, the identified differentially expressed miRNAs (DEmiRs) are involved in the co-regulatory network with hub-TFs. The six hub-TFs encoding genes, including STAT1, MAF, CEBPB, MAFB, NCOR2, and MAFG are consistently differentially expressed in the peripheral blood mononuclear cells of IPAH patients, and these hub-TFs showed significant diagnostic efficacy in distinguishing IPAH cases from the healthy individuals. Moreover, we revealed that the co-regulatory hub-TFs encoding genes are correlated with the infiltrations of various immune signatures, including CD4 regulatory T cells, immature B cells, macrophages, MDSCs, monocytes, Tfh cells, and Th1 cells. Finally, we discovered that the protein product of STAT1 and NCOR2 interacts with several drugs with appropriate binding affinity. CONCLUSIONS The identification of hub-TFs and miRNA-hub-TFs co-regulatory networks may provide a new avenue into the mechanism of IPAH development and pathogenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Minawaer Hujiaaihemaiti
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Ming-Yuan Li
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Alidan Aierken
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
5
|
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int 2022; 22:381. [PMID: 36457043 PMCID: PMC9713203 DOI: 10.1186/s12935-022-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.
Collapse
Affiliation(s)
- Xuechun Bai
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Ying Xu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yan Liang
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Dandan Li
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
6
|
Chen Y, Wu C, Wang X, Zhou X, Kang K, Cao Z, Yang Y, Zhong Y, Xiao G. Weighted gene co-expression network analysis identifies dysregulated B-cell receptor signaling pathway and novel genes in pulmonary arterial hypertension. Front Cardiovasc Med 2022; 9:909399. [PMID: 36277750 PMCID: PMC9583267 DOI: 10.3389/fcvm.2022.909399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a devastating cardio-pulmonary vascular disease in which chronic elevated pulmonary arterial pressure and pulmonary vascular remodeling lead to right ventricular failure and premature death. However, the exact molecular mechanism causing PAH remains unclear. Methods RNA sequencing was used to analyze the transcriptional profiling of controls and rats treated with monocrotaline (MCT) for 1, 2, 3, and 4 weeks. Weighted gene co-expression network analysis (WGCNA) was employed to identify the key modules associated with the severity of PAH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the potential biological processes and pathways of key modules. Real-time PCR and western blot analysis were used to validate the gene expression. The hub genes were validated by an independent dataset obtained from the Gene Expression Omnibus database. Results A total of 26 gene modules were identified by WGCNA. Of these modules, two modules showed the highest correlation with the severity of PAH and were recognized as the key modules. GO analysis of key modules showed the dysregulated inflammation and immunity, particularly B-cell-mediated humoral immunity in MCT-induced PAH. KEGG pathway analysis showed the significant enrichment of the B-cell receptor signaling pathway in the key modules. Pathview analysis revealed the dysregulation of the B-cell receptor signaling pathway in detail. Moreover, a series of humoral immune response-associated genes, such as BTK, BAFFR, and TNFSF4, were found to be differentially expressed in PAH. Additionally, five genes, including BANK1, FOXF1, TLE1, CLEC4A1, and CLEC4A3, were identified and validated as the hub genes. Conclusion This study identified the dysregulated B-cell receptor signaling pathway, as well as novel genes associated with humoral immune response in MCT-induced PAH, thereby providing a novel insight into the molecular mechanisms underlying inflammation and immunity and therapeutic targets for PAH.
Collapse
Affiliation(s)
- Yuanrong Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chaoling Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xiaoping Wang
- Department of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xufeng Zhou
- Department of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Kunpeng Kang
- Department of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zuofeng Cao
- Department of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yihong Yang
- Department of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiming Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China,Department of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Gannan Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, China,*Correspondence: Yiming Zhong
| | - Genfa Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China,Department of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Gannan Branch Center of National Geriatric Disease Clinical Medical Research Center, Gannan Medical University, Ganzhou, China,Genfa Xiao
| |
Collapse
|
7
|
Sonawane AR, Aikawa E, Aikawa M. Connections for Matters of the Heart: Network Medicine in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:873582. [PMID: 35665246 PMCID: PMC9160390 DOI: 10.3389/fcvm.2022.873582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are diverse disorders affecting the heart and vasculature in millions of people worldwide. Like other fields, CVD research has benefitted from the deluge of multiomics biomedical data. Current CVD research focuses on disease etiologies and mechanisms, identifying disease biomarkers, developing appropriate therapies and drugs, and stratifying patients into correct disease endotypes. Systems biology offers an alternative to traditional reductionist approaches and provides impetus for a comprehensive outlook toward diseases. As a focus area, network medicine specifically aids the translational aspect of in silico research. This review discusses the approach of network medicine and its application to CVD research.
Collapse
Affiliation(s)
- Abhijeet Rajendra Sonawane
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Zou HX, Qiu BQ, Lai SQ, Zhou XL, Gong CW, Wang LJ, Yuan MM, He AD, Liu JC, Huang H. Iron Metabolism and Idiopathic Pulmonary Arterial Hypertension: New Insights from Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5669412. [PMID: 34722766 PMCID: PMC8556088 DOI: 10.1155/2021/5669412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare vascular disease with a poor prognosis, and the mechanism of its development remains unclear. Further molecular pathology studies may contribute to a comprehensive understanding of IPAH and provide new insights into diagnostic markers and potential therapeutic targets. Iron deficiency has been reported in 43-63% of patients with IPAH and is associated with reduced exercise capacity and higher mortality, suggesting that dysregulated iron metabolism may play an unrecognized role in influencing the development of IPAH. In this study, we explored the regulatory mechanisms of iron metabolism in IPAH by bioinformatic analysis. The molecular function of iron metabolism-related genes (IMRGs) is mainly enriched in active transmembrane transporter activity, and they mainly affect the biological process of response to oxidative stress. Ferroptosis and fluid shear stress and atherosclerosis pathways may be the critical pathways regulating iron metabolism in IPAH. We further identified 7 key genes (BCL2, GCLM, MSMO1, SLC7A11, SRXN1, TSPAN5, and TXNRD1) and 5 of the key genes (BCL2, MSMO1, SLC7A11, TSPAN5, and TXNRD1) as target genes may be regulated by 6 dysregulated miRNAs (miR-483-5p, miR-27a-3p, miR-27b-3p, miR-26b-5p, miR-199a-5p, and miR-23b-3p) in IPAH. In addition, we predicted potential IPAH drugs-celastrol and cinnamaldehyde-that target iron metabolism based on our results. These results provide insights for further definition of the role of dysregulated iron metabolism in IPAH and contribute to a deeper understanding of the molecular mechanisms and potential therapeutic targets of IPAH.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Song-Qing Lai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue-Liang Zhou
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Cheng-Wu Gong
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li-Jun Wang
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ming-Ming Yuan
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - An-Di He
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huang Huang
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|