1
|
Yang J, Yang L, Wang Y, Huai L, Shi B, Zhang D, Xu W, Cui D. Interleukin-6 related signaling pathways as the intersection between chronic diseases and sepsis. Mol Med 2025; 31:34. [PMID: 39891057 PMCID: PMC11783753 DOI: 10.1186/s10020-025-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Sepsis is associated with immune dysregulated and organ dysfunction due to severe infection. Clinicians aim to restore organ function, rather than prevent diseases that are prone to sepsis, resulting in high mortality and a heavy public health burden. Some chronic diseases can induce sepsis through inflammation cascade reaction and Cytokine Storm (CS). Interleukin (IL)-6, the core of CS, and its related signaling pathways have been considered as contributors to sepsis. Therefore, it is important to study the relationship between IL-6 and its related pathways in sepsis-related chronic diseases. This review generalized the mechanism of sepsis-related chronic diseases via IL-6 related pathways with the purpose to take rational management for these diseases. IL-6 related signaling pathways were sought in Kyoto Encyclopedia of Genes and Genomes (KEGG), and retrieved protein-protein interaction in the Search for Interaction Genes tool (STRING). In PubMed and Google Scholar, the studies were searched out, which correlating to IL-6 related pathways and associating with the pathological process of sepsis. Focused on the interactions of sepsis and IL-6 related pathways, some chronic diseases have been studied for association with sepsis, containing insulin resistance, Alcoholic liver disease (ALD), Alzheimer disease (AD), and atherosclerosis. This article summarized the inflammatory mechanisms of IL-6 cross-talked with other mediators of some chronic diseases in vitro, animal models, and human experiments, leading to the activation of pathways and accelerating the progression of sepsis. The clinicians should be highlight to this kind of diseases and more clinical trials are needed to provide more reliable theoretical basis for health policy formulation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China.
| | - Lin Yang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Yanjiao Wang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Lu Huai
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Bohan Shi
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Di Zhang
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Wei Xu
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| | - Di Cui
- Department of Emergency, the People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
2
|
Taylor R, Zhang C, George D, Kotecha S, Abdelghaffar M, Forster T, Santos Rodrigues PD, Reisinger AC, White D, Hamilton F, Watkins WJ, Griffith DM, Ghazal P. Low circulatory levels of total cholesterol, HDL-C and LDL-C are associated with death of patients with sepsis and critical illness: systematic review, meta-analysis, and perspective of observational studies. EBioMedicine 2024; 100:104981. [PMID: 38290288 PMCID: PMC10844818 DOI: 10.1016/j.ebiom.2024.104981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Mechanistic studies have established a biological role of sterol metabolism in infection and immunity with clinical data linking deranged cholesterol metabolism during sepsis with poorer outcomes. In this systematic review we assess the relationship between biomarkers of cholesterol homeostasis and mortality in critical illness. METHODS We identified articles by searching a total of seven electronic databases from inception to October 2023. Prospective observational cohort studies included those subjects who had systemic cholesterol (Total Cholesterol (TC), HDL-C or LDL-C) levels assessed on the first day of ICU admission and short-term mortality recorded. Meta-analysis and meta-regression were used to evaluate overall mean differences in serum cholesterol levels between survivors and non-survivors. Study quality was assessed using the Newcastle-Ottawa Scale. FINDINGS From 6469 studies identified by searches, 24 studies with 2542 participants were included in meta-analysis. Non-survivors had distinctly lower HDL-C at ICU admission -7.06 mg/dL (95% CI -9.21 to -4.91, p < 0.0001) in comparison with survivors. Corresponding differences were also seen less robustly for TC -21.86 mg/dL (95% CI -31.23 to -12.49, p < 0.0001) and LDL-C -8.79 mg/dL (95% CI, -13.74 to -3.83, p = 0.0005). INTERPRETATION Systemic cholesterol levels (TC, HDL-C and LDL-C) on admission to critical care are inversely related to mortality. This finding is consistent with the notion that inflammatory and metabolic setpoints are coupled, such that the maladaptive-setpoint changes of cholesterol in critical illness are related to underlying inflammatory processes. We highlight the potential of HDL-biomarkers as early predictors of severity of illness and emphasise that future research should consider the metabolic and functional heterogeneity of HDLs. FUNDING EU-ERDF-Welsh Government Ser Cymru programme, BBSRC, and EU-FP7 ClouDx-i project (PG).
Collapse
Affiliation(s)
- Rory Taylor
- Deanery of Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, UK.
| | - Chengyuan Zhang
- Department of Anaesthesia, Critical Care and Pain Medicine, NHS Lothian, Edinburgh, UK
| | - Deslit George
- School of Medicine, University of Cardiff, Cardiff, UK
| | - Sarah Kotecha
- Department of Child Health, School of Medicine, University of Cardiff, Cardiff, UK
| | | | | | | | - Alexander C Reisinger
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Daniel White
- Project Sepsis, Systems Immunity Research Institute, School of Medicine, University of Cardiff, Cardiff, UK
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - W John Watkins
- Dept of Immunity and Infection, School of Medicine, Cardiff University, Cardiff, UK
| | - David M Griffith
- Anaesthesia, Critical Care and Pain, Molecular, Genetics, and Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Ghazal
- Project Sepsis, Systems Immunity Research Institute, School of Medicine, University of Cardiff, Cardiff, UK.
| |
Collapse
|
3
|
Mitalo NS, Waiganjo NN, Mokua Mose J, Bosire DO, Oula JO, Orina Isaac A, Nyabuga Nyariki J. Coinfection with Schistosoma mansoni Enhances Disease Severity in Human African Trypanosomiasis. J Trop Med 2023; 2023:1063169. [PMID: 37954132 PMCID: PMC10637842 DOI: 10.1155/2023/1063169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Human African trypanosomiasis (HAT) and schistosomiasis are neglected parasitic diseases found in the African continent. This study was conducted to determine how primary infection with Schistosoma mansoni affects HAT disease progression with a secondary infection with Trypanosoma brucei rhodesiense (T.b.r) in a mouse model. Methods Female BALB-c mice (6-8 weeks old) were randomly divided into four groups of 12 mice each. The different groups were infected with Schistosoma mansoni (100 cercariae) and Trypanosoma brucei rhodesiense (5.0 × 104) separately or together. Twenty-one days after infection with T.b.r, mice were sacrificed and samples were collected for analysis. Results The primary infection with S. mansoni significantly enhanced successive infection by the T.b.r; consequently, promoting HAT disease severity and curtailing host survival time. T.b.r-induced impairment of the neurological integrity and breach of the blood-brain barrier were markedly pronounced on coinfection with S. mansoni. Coinfection with S. mansoni and T.b.r resulted in microcytic hypochromic anemia characterized by the suppression of RBCs, hematocrit, hemoglobin, and red cell indices. Moreover, coinfection of the mice with the two parasites resulted in leukocytosis which was accompanied by the elevation of basophils, neutrophils, lymphocytes, monocytes, and eosinophils. More importantly, coinfection resulted in a significant elevation of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, creatinine, urea, and uric acid, which are the markers of liver and kidney damage. Meanwhile, S. mansoni-driven dyslipidemia was significantly enhanced by the coinfection of mice with T.b.r. Moreover, coinfection with S. mansoni and T.b.r led to a strong immune response characterized by a significant increase in serum TNF-α and IFN-γ. T.b.r infection enhanced S. mansoni-induced depletion of cellular-reduced glutathione (GSH) in the brain and liver tissues, indicative of lethal oxidative damage. Similarly, coinfection resulted in a significant rise in nitric oxide (NO) and malondialdehyde (MDA) levels. Conclusion Primary infection with S. mansoni exacerbates disease severity of secondary infection with T.b.r in a mouse model that is associated with harmful inflammatory response, oxidative stress, and organ injury.
Collapse
Affiliation(s)
- Nancy S. Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Naomi N. Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - David O. Bosire
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James O. Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box 52428, Nairobi 00200, Kenya
| |
Collapse
|
4
|
Liao YE, Liu J, Arnold K. Heparan sulfates and heparan sulfate binding proteins in sepsis. Front Mol Biosci 2023; 10:1146685. [PMID: 36865384 PMCID: PMC9971734 DOI: 10.3389/fmolb.2023.1146685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Heparan sulfates (HSs) are the main components in the glycocalyx which covers endothelial cells and modulates vascular homeostasis through interactions with multiple Heparan sulfate binding proteins (HSBPs). During sepsis, heparanase increases and induces HS shedding. The process causes glycocalyx degradation, exacerbating inflammation and coagulation in sepsis. The circulating heparan sulfate fragments may serve as a host defense system by neutralizing dysregulated Heparan sulfate binding proteins or pro-inflammatory molecules in certain circumstances. Understanding heparan sulfates and heparan sulfate binding proteins in health and sepsis is critical to decipher the dysregulated host response in sepsis and advance drug development. In this review, we will overview the current understanding of HS in glycocalyx under septic condition and the dysfunctional heparan sulfate binding proteins as potential drug targets, particularly, high mobility group box 1 (HMGB1) and histones. Moreover, several drug candidates based on heparan sulfates or related to heparan sulfates, such as heparanase inhibitors or heparin-binding protein (HBP), will be discussed regarding their recent advances. By applying chemical or chemoenzymatic approaches, the structure-function relationship between heparan sulfates and heparan sulfate binding proteins is recently revealed with structurally defined heparan sulfates. Such homogenous heparan sulfates may further facilitate the investigation of the role of heparan sulfates in sepsis and the development of carbohydrate-based therapy.
Collapse
Affiliation(s)
- Yi-En Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
5
|
Merdji H, Siegemund M, Meziani F. Acute and Long-Term Cardiovascular Complications among Patients with Sepsis and Septic Shock. J Clin Med 2022; 11:jcm11247362. [PMID: 36555977 PMCID: PMC9781501 DOI: 10.3390/jcm11247362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death within intensive care units (ICUs) [...].
Collapse
Affiliation(s)
- Hamid Merdji
- Faculté de Médecine, Université de Strasbourg (UNISTRA), Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Médecine Intensive-Réanimation, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France
| | - Martin Siegemund
- Intensive Care Unit, Department of Acute Medicine, University Hospital, 4056 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Ferhat Meziani
- Faculté de Médecine, Université de Strasbourg (UNISTRA), Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Service de Médecine Intensive-Réanimation, 67000 Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-(0)-369-5-511-02-4; Fax: +33-(0)-369-551-859
| |
Collapse
|
6
|
Dyslipidemia and Inflammation as Hallmarks of Oxidative Stress in COVID-19: A Follow-Up Study. Int J Mol Sci 2022; 23:ijms232315350. [PMID: 36499671 PMCID: PMC9736368 DOI: 10.3390/ijms232315350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Recent works have demonstrated a significant reduction in cholesterol levels and increased oxidative stress in patients with coronavirus disease 2019 (COVID-19). The cause of this alteration is not well known. This study aimed to comprehensively evaluate their possible association during the evolution of COVID-19. This is an observational prospective study. The primary endpoint was to analyze the association between lipid peroxidation, lipid, and inflammatory profiles in COVID-19 patients. A multivariate regression analysis was employed. The secondary endpoint included the long-term follow-up of lipid profiles. COVID-19 patients presented significantly lower values in their lipid profile (total, low, and high-density lipoprotein cholesterol) with greater oxidative stress and inflammatory response compared to the healthy controls. Lipid peroxidation was the unique oxidative parameter with a significant association with the total cholesterol (OR: 0.982; 95% CI: 0.969-0.996; p = 0.012), IL1-RA (OR: 0.999; 95% CI: 0.998-0.999; p = 0.021) IL-6 (OR: 1.062; 95% CI: 1.017-1.110; p = 0.007), IL-7 (OR: 0.653; 95% CI: 0.433-0.986; p = 0.042) and IL-17 (OR: 1.098; 95% CI: 1.010-1.193; p = 0.028). Lipid abnormalities recovered after the initial insult during long-term follow-up (IQR 514 days); however, those with high LPO levels at hospital admission had, during long-term follow-up, an atherogenic lipid profile. Our study suggests that oxidative stress in COVID-19 is associated with derangements of the lipid profile and inflammation. Survivors experienced a recovery in their lipid profiles during long-term follow-up, but those with stronger oxidative responses had an atherogenic lipid profile.
Collapse
|
7
|
Laudanski K, Liu D, Hajj J, Ghani D, Szeto WY. Serum level of total histone 3, H3K4me3, and H3K27ac after non-emergent cardiac surgery suggests the persistence of smoldering inflammation at 3 months in an adult population. Clin Epigenetics 2022; 14:112. [PMID: 36068552 PMCID: PMC9446722 DOI: 10.1186/s13148-022-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background Despite clinical relevance of immunological activation due to histone leakage into the serum following cardiac surgery, long-term data describing their longitudinal dynamic are lacking. Therefore, this study examines the serum levels of histone 3 (tH3) and its modifications (H3K4me3 and H3K27ac) alongside immune system activation during the acute and convalescence phases of cardiac surgery. Methods Blood samples from fifty-nine individuals were collected before non-emergent cardiac surgery (tpre-op) and 24 h (t24hr), seven days (t7d), and three months (t3m) post-procedure to examine serum levels of tH3, H3K4me3, and H3K27ac. Serum heat shock protein-60 (HSP-60) was a surrogate of the cellular damage marker. Serum C-reactive protein (CRP) and interleukin 6 (IL-6) assessed smoldering inflammation. TNFα and IL-6 production by whole blood in response to lipopolysaccharide (LPS) evaluated immunological activation. Electronic medical records provided demographic, peri-operative, and clinical information. Paired longitudinal analyses were employed with data expressed as mean and standard deviation (X ± SD) or median and interquartile range (Me[IQ25; 75%]. Results Compared to pre-operative levels (tH3Pre-op = 1.6[0.33;2.4]), post-operative serum tH3 significantly (p > 0.0001) increased after heart surgery (tH324hr = 2.2[0.3;28]), remained elevated at 7 days (tH37d = 2.4[0.37;5.3]), and at 3 months (tH33m = 2.0[0.31;2.9]). Serum H3K27ac was elevated at 24 h (H3K27ac24hr = 0.66 ± 0.51; p = 0.025) and seven days (H3K27ac7d = 0.94 ± 0.95; p = 0.032) as compared to baseline hours (H3K27acPre-op = 0.55 ± 0.54). Serum H3K4me3 was significantly diminished at three months (H3K4me3Pre-op = 0.94 ± 0.54 vs. H3K27ac3m = 0.59 ± 0.89; p = 0.008). tH3 correlated significantly with the duration of anesthesia (r2 = 0.38). In contrast, HSP-60 normalized seven days after surgery. Peri-operative intake of acetaminophen, but no acetylsalicylic acid (ASA), acid, ketorolac or steroids, resulted in the significant depression of serum H3K4me3 at 24 h (H3K4me3acetom- = 1.26[0.71; 3.21] vs H3K4me3acetom+ = 0.54[0.07;1.01]; W[50] = 2.26; p = 0.021). CRP, but not IL-6, remained elevated at 3 months compared to pre-surgical levels and correlated with tH324hrs (r2 = 0.43), tH37d (r2 = 0.71; p < 0.05), H3K4me37d (r2 = 0.53), and H3K27ac7d (r2 = 0.49). Production of TNFα by whole blood in response to LPS was associated with serum tH324hrs (r2 = 0.67). Diminished H3K4me324hrs, H3K27ac24hrs, and H3K27ac3m, accompanied the emergence of liver failure. Conclusions We demonstrated a prolonged elevation in serum histone 3 three months after cardiac surgery. Furthermore, histone 3 modifications had a discrete time evolution indicating differential immune activation.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA. .,Department of Neurology, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA. .,Leonard Davis Institute for Health Economics, University of Pennsylvania, JMB 127, 3620 Hamilton Walk, Philadelphia, PA, 19146, USA.
| | - Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jihane Hajj
- School of Nursing, Widener University, Philadelphia, PA, USA
| | - Danyal Ghani
- Department of Cardiac Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Wilson Y Szeto
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Zhu P, Chen Y, Wang J, Lin G, Wang R, Que Y, Zhou J, Xu G, Luo J, Du Y. Receptor-Interacting Protein Kinase 3 Suppresses Mitophagy Activation via the Yes-Associated Protein/Transcription Factor EB Pathways in Septic Cardiomyopathy. Front Cardiovasc Med 2022; 9:856041. [PMID: 35402535 PMCID: PMC8987354 DOI: 10.3389/fcvm.2022.856041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Mitophagy, known as the main mechanism of mitochondrial quality control, determines the pathophysiology of septic cardiomyopathy, although the precise regulatory mechanisms remain elusive. Data from the present study suggested that receptor-interacting protein kinase 3 (RIPK3) expression could be enhanced in response to lipopolysaccharide (LPS) challenge. Upregulated RIPK3 expression was accompanied by severe cardiac injury and cardiac dysfunction. Further examination revealed that elevated RIPK3 expression subsequently inhibited the Yes-associated protein (YAP) pathway, which was accompanied by reduced transcription factor EB (TFEB) expression. Inhibition of TFEB would reduce mitophagy, which ultimately induced cardiomyocyte death under LPS challenge. In contrast, loss of RIPK3 induced the YAP/TFEB/mitophagy pathway alleviated the sensitivity of cardiomyocytes to LPS-induced cytotoxicity. Collectively, the RIPK3/YAP/TFEB axis was confirmed to be responsible for the pathogenesis of septic cardiomyopathy by inhibiting mitophagy. These findings have potential significance for the progression of new approaches to the treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Pingjun Zhu
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yangxiaocao Chen
- Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Junyan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Lin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Runsheng Wang
- Department of Respiratory and Critical Care Medicine, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Yifan Que
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jin Zhou
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guogang Xu
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Guogang Xu
| | - Jiang Luo
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Jiang Luo
| | - Yingzhen Du
- Department of Disease Control and Prevention, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Yingzhen Du
| |
Collapse
|
9
|
Yu SY, Ge ZZ, Xiang J, Gao YX, Lu X, Walline JH, Qin MB, Zhu HD, Li Y. Is rosuvastatin protective against sepsis-associated encephalopathy? A secondary analysis of the SAILS trial. World J Emerg Med 2022; 13:367-372. [PMID: 36119770 PMCID: PMC9420670 DOI: 10.5847/wjem.j.1920-8642.2022.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sepsis is a common cause of death in emergency departments and sepsis-associated encephalopathy (SAE) is a major complication. Rosuvastatin may play a neuroprotective role due to its protective effects on the vascular endothelium and its anti-inflammatory functions. Our study aimed to explore the potential protective function of rosuvastatin against SAE. METHODS Sepsis patients without any neurological dysfunction on admission were prospectively enrolled in the "Rosuvastatin for Sepsis-Associated Acute Respiratory Distress Syndrome" study (SAILS trial, ClinicalTrials.gov number: NCT00979121). Patients were divided into rosuvastatin and placebo groups. This is a secondary analysis of the SAILS dataset. Baseline characteristics, therapy outcomes, and adverse drug events were compared between groups. RESULTS A total of 86 patients were eligible for our study. Of these patients, 51 were treated with rosuvastatin. There were significantly fewer cases of SAE in the rosuvastatin group than in the placebo group (32.1% vs. 57.1%, P=0.028). However, creatine kinase levels were significantly higher in the rosuvastatin group than in the placebo group (233 [22-689] U/L vs. 79 [12-206] U/L, P=0.034). CONCLUSION Rosuvastatin appears to have a protective role against SAE but may result in a higher incidence of adverse events.
Collapse
Affiliation(s)
- Shi-yuan Yu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zeng-zheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jun Xiang
- General Medicine Department of Jingnan Medical Center, General Hospital of PLA, Beijing 100039, China
| | - Yan-xia Gao
- Emergency Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Lu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Joseph Harold Walline
- Department of Emergency Medicine, Penn State Health, Milton S. Hershey Medical Center, Hershey 17033, USA
| | - Mu-bing Qin
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hua-dong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|