1
|
Zhang X, Zuo L, Song X, Zhang W, Yang Z, Wang Z, Guo Y, Ge S, Wang L, Wang Y, Geng Z, Li J, Hu J. The mesenteric adipokine SFRP5 alleviated intestinal epithelial apoptosis improving barrier dysfunction in Crohn's disease. iScience 2024; 27:111517. [PMID: 39759008 PMCID: PMC11699250 DOI: 10.1016/j.isci.2024.111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/21/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The hypertrophic mesenteric adipose tissue (htMAT) of Crohn disease (CD) participates in inflammation through the expression of adipokines, but the exact mechanism of this action in the intestine is unknown. Here, we analyzed the expression of secreted frizzled-related protein 5 (SFRP5), an adipokine with cytoprotective effects, in htMAT and its role in CD. The results of this study revealed that the level of SFPR5 increased in the diseased MAT (htMAT) of CD patients and aggregated among intestinal epithelial cells in the diseased intestine and that it could ameliorate intestinal barrier dysfunction in tumor necrosis factor alpha (TNF-α)-stimulated colonic organoids and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced mice at least in part through the inhibition of Wnt5a-mediated apoptosis in epithelial cells. This study elucidates possible mechanisms by which mesenteric adipokines influence the progression of enteritis and provides a new theoretical basis for the treatment of CD via the mesenteric pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenjing Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Yibing Guo
- Clinical Medical College, Bengbu Medical University, Bengbu, China
| | - Sitang Ge
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Sun Y, Hu Z, Han J, Li G. SP1-mediated transcriptional repression of SFRP5 is correlated with cardiac fibroblast activation and atrial myocyte apoptosis in the development of atrial fibrillation. Exp Cell Res 2024; 443:114326. [PMID: 39536929 DOI: 10.1016/j.yexcr.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Secreted frizzled related protein 5 (SFRP5) is a recognized cardioprotective protein with diminished expression in atrial fibrillation (AF). This study investigates SFRP5's function in AF-related cardiac fibrosis and cardiomyocyte apoptosis, exploring the underlying dysregulation causes. Utilizing C57BL/6 mice, mouse cardiac fibroblasts (CFs), and HC-1 mouse atrial myocyte cell line, AF models were induced by angiotensin Ⅱ (Ang Ⅱ). SFRP5 levels were consistently decreased in plasma samples from clinical patients, modeled mice, and CF culture supernatants. Treatment with recombinant SFRP5 restored its levels, mitigating Ang Ⅱ-induced AF in mice and ameliorating atrial tissue fibrosis and oxidative stress. In vitro, SFRP5 recombinant protein suppressed CF activation and fibrosis-related markers. The study identified Sp1 transcription factor (SP1) binding to the SFRP5 promoter, causing transcriptional repression. SP1 knockdown reinstated SFRP5 levels in mice and CFs, thus suppressing fibrosis. Additionally, SP1 knockdown attenuated Ang Ⅱ-induced apoptosis in HC-1 cells, but this effect was counteracted by concurrent SFRP5 knockdown. In conclusion, this investigation underscores that SP1 mediates SFRP5 loss during AF by transcriptional repression, contributing to fibrosis and myocyte apoptosis. These findings illuminate potential therapeutic interventions targeting the SFRP5-SP1 axis in AF-related cardiac complications.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China.
| | - Zhenzhen Hu
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China
| | - Jie Han
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China
| | - Gang Li
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou, 450000, Henan, PR China
| |
Collapse
|
3
|
Hou J, Deng Q, Qiu X, Liu S, Li Y, Huang C, Wang X, Zhang Q, Deng X, Zhong Z, Zhong W. Proteomic analysis of plasma proteins from patients with cardiac rupture after acute myocardial infarction using TMT-based quantitative proteomics approach. Clin Proteomics 2024; 21:18. [PMID: 38429673 PMCID: PMC10908035 DOI: 10.1186/s12014-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.
Collapse
Affiliation(s)
- Jingyuan Hou
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
- GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Qiaoting Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xiaohong Qiu
- Meizhou clinical Medical School, Guangdong Medical University, Meizhou, Guangdong, 514031, China
| | - Sudong Liu
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Youqian Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Changjing Huang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Xianfang Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
4
|
Song Y, Ma Y, Zhang K, Zhang W, Xiong G, Qi T, Shi J, Qiu H, Zhang J, Han F, Kan C, Sun X. Secreted frizzled-related protein 5: A promising therapeutic target for metabolic diseases via regulation of Wnt signaling. Biochem Biophys Res Commun 2023; 677:70-76. [PMID: 37549604 DOI: 10.1016/j.bbrc.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Metabolic diseases pose a significant global health challenge, characterized by an imbalance in metabolism and resulting in various complications. Secreted frizzled-related protein 5 (SFRP5), an adipokine known for its anti-inflammatory properties, has gained attention as a promising therapeutic target for metabolic diseases. SFRP5 acts as a key regulator in the Wnt signaling pathway, exerting its influence on critical cellular functions including proliferation, differentiation, and migration. Its significance extends to the realm of adipose tissue biology, where it plays a central role in regulating inflammation, insulin resistance, adipogenesis, lipid metabolism, glucose homeostasis, and energy balance. By inhibiting Wnt signaling, SFRP5 facilitates adipocyte growth, promotes lipid accumulation, and contributes to a decrease in oxidative metabolism. Lifestyle interventions and pharmacological treatments have shown promise in increasing SFRP5 levels and protecting against metabolic abnormalities. SFRP5 is a pivotal player in metabolic diseases and presents itself as a promising therapeutic target. An overview of SFRP5 and its involvement in metabolic disorders and metabolism is provided in this comprehensive review. By elucidating these aspects, valuable insights can be gained to foster the development of effective strategies in combating metabolic diseases.
Collapse
Affiliation(s)
- Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
5
|
Kelly CJ, Chu M, Untaru R, Assadi-Khansari B, Chen D, Croft AJ, Horowitz JD, Boyle AJ, Sverdlov AL, Ngo DTM. Association of Circulating Plasma Secreted Frizzled-Related Protein 5 (Sfrp5) Levels with Cardiac Function. J Cardiovasc Dev Dis 2023; 10:274. [PMID: 37504530 PMCID: PMC10380407 DOI: 10.3390/jcdd10070274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Secreted frizzled-related protein 5 (SFRP5) is a novel anti-inflammatory adipokine that may play a role in cardiovascular development and disease. However, there is yet to be a comprehensive investigation into whether circulating SFRP5 can be a biomarker for cardiac function. Plasma SFRP5 levels were measured via ELISA in 262 patients admitted to a cardiology unit. Plasma SFRP5 levels were significantly lower in patients with a history of heart failure (HF), coronary artery disease (CAD), and atrial fibrillation (AF; p = 0.001). In univariate analyses, SFRP5 levels were also significantly positively correlated with left ventricular ejection fraction (LVEF) (r = 0.52, p < 0.001) and negatively correlated with E/E' (r = -0.30, p < 0.001). Patients with HF, CAD, low LVEF, low triglycerides, high CRP, and high eGFR were associated with lower SFRP5 levels independent of age, BMI, or diabetes after multivariate analysis (overall model r = 0.729, SE = 0.638). Our results show that low plasma SFRP5 levels are independently associated with the presence of HF, CAD, and, importantly, impaired LV function. These results suggest a potential role of SFRP5 as a biomarker, as well as a mediator of cardiac dysfunction independent of obesity and metabolic regulation.
Collapse
Affiliation(s)
- Conagh J Kelly
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Matthew Chu
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Rossana Untaru
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
| | - Bahador Assadi-Khansari
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
| | - Dongqing Chen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Amanda J Croft
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan 2308, Australia
| | - John D Horowitz
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Andrew J Boyle
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan 2308, Australia
| | - Aaron L Sverdlov
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan 2308, Australia
| | - Doan T M Ngo
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Hunter New England Local Health District, Newcastle 2305, Australia
| |
Collapse
|
6
|
Lin LC, Tu B, Song K, Liu ZY, Sun H, Zhou Y, Sha JM, Yang JJ, Zhang Y, Zhao JY, Tao H. Mitochondrial quality control in cardiac fibrosis: Epigenetic mechanisms and therapeutic strategies. Metabolism 2023:155626. [PMID: 37302693 DOI: 10.1016/j.metabol.2023.155626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis (CF) is considered an ultimate common pathway of a wide variety of heart diseases in response to diverse pathological and pathophysiological stimuli. Mitochondria are characterized as isolated organelles with a double-membrane structure, and they primarily contribute to and maintain highly dynamic energy and metabolic networks whose distribution and structure exert potent support for cellular properties and performance. Because the myocardium is a highly oxidative tissue with high energy demands to continuously pump blood, mitochondria are the most abundant organelles within mature cardiomyocytes, accounting for up to one-third of the total cell volume, and play an essential role in maintaining optimal performance of the heart. Mitochondrial quality control (MQC), including mitochondrial fusion, fission, mitophagy, mitochondrial biogenesis, and mitochondrial metabolism and biosynthesis, is crucial machinery that modulates cardiac cells and heart function by maintaining and regulating the morphological structure, function and lifespan of mitochondria. Certain investigations have focused on mitochondrial dynamics, including manipulating and maintaining the dynamic balance of energy demand and nutrient supply, and the resultant findings suggest that changes in mitochondrial morphology and function may contribute to bioenergetic adaptation during cardiac fibrosis and pathological remodeling. In this review, we discuss the function of epigenetic regulation and molecular mechanisms of MQC in the pathogenesis of CF and provide evidence for targeting MQC for CF. Finally, we discuss how these findings can be applied to improve the treatment and prevention of CF.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
Collapse
Affiliation(s)
- Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6235747. [PMID: 35620580 PMCID: PMC9129988 DOI: 10.1155/2022/6235747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
According to the latest Global Burden of Disease Study, cardiovascular disease (CVD) is the leading cause of death, and ischemic heart disease and stroke are the cause of death in approximately half of CVD patients. In CVD, mitochondrial dysfunction following ischemia-reperfusion (I/R) injury results in heart failure. The proper functioning of oxidative phosphorylation (OXPHOS) and the mitochondrial life cycle in cardiac mitochondria are closely related to mitochondrial DNA (mtDNA). Following myocardial I/R injury, mitochondria activate multiple repair and clearance mechanisms to repair damaged mtDNA. When these repair mechanisms are insufficient to restore the structure and function of mtDNA, irreversible mtDNA damage occurs, leading to mtDNA mutations. Since mtDNA mutations aggravate OXPHOS dysfunction and affect mitophagy, mtDNA mutation accumulation leads to leakage of mtDNA and proteins outside the mitochondria, inducing an innate immune response, aggravating cardiovascular injury, and leading to the need for external interventions to stop or slow the disease course. On the other hand, mtDNA released into the circulation after cardiac injury can serve as a biomarker for CVD diagnosis and prognosis. This article reviews the pathogenic basis and related research findings of mtDNA oxidative damage and mtDNA leak-triggered innate immune response associated with I/R injury in CVD and summarizes therapeutic options that target mtDNA.
Collapse
|