1
|
Wang Z, Yang Y, Wang N, Lu L, Xu C, Ren J, Yang L. RIP3 orchestrates oxidative stress and pyroptosis in doxorubicin-induced cardiotoxicity through regulation of AKT/Nrf2 signaling cascade. Mol Cell Biochem 2024:10.1007/s11010-024-05029-6. [PMID: 38955910 DOI: 10.1007/s11010-024-05029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/04/2024] [Indexed: 07/04/2024]
Abstract
This study was designed to explore the role of RIP3 in DOX-induced cardiotoxicity and its underlying molecular mechanisms. Our results demonstrate that RIP3 exacerbates DOX-induced cardiotoxicity through promoting oxidative stress and pyroptosis by regulating the AKT/Nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway. Inhibition of RIP3 using GSK-872 attenuated DOX-induced cardiac remodeling and contractile dysfunction. Moreover, using GSK-872 in vivo, the results revealed that inhibition of RIP3 alleviated DOX-induced cardiotoxicity by the resulting inhibition of oxidative stress and pyroptosis. In addition, inhibition of RIP3 increased the protein levels of AKT and Nrf2 in DOX-treated mouse hearts. Furthermore, the AKT inhibitor LY294002 lessened RIP3 reduction-offered protection against DOX-induced H9c2 cell injury by moderating oxidative stress and pyroptosis. Taken together, these data demonstrate that RIP3 activation orchestrates DOX-induced cardiotoxicity through elevated oxidative stress and pyroptosis in an AKT/Nrf2-dependent manner. Those findings highlight the clinical relevance and therapeutic potential of targeting RIP3 for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhenyi Wang
- Department of Anesthesiology, Children's Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710003, Shaanxi, China
| | - Yitong Yang
- Department of Children's Respiratory Asthma, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xian Yang, 712046, Shaanxi, China
| | - Nisha Wang
- Department of Anesthesiology, Children's Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710003, Shaanxi, China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Chennian Xu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhong Shan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Lifang Yang
- Department of Anesthesiology, Children's Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
2
|
Lteif C, Huang Y, Guerra LA, Gawronski BE, Duarte JD. Using Omics to Identify Novel Therapeutic Targets in Heart Failure. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004398. [PMID: 38766848 PMCID: PMC11187651 DOI: 10.1161/circgen.123.004398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Omics refers to the measurement and analysis of the totality of molecules or biological processes involved within an organism. Examples of omics data include genomics, transcriptomics, epigenomics, proteomics, metabolomics, and more. In this review, we present the available literature reporting omics data on heart failure that can inform the development of novel treatments or innovative treatment strategies for this disease. This includes polygenic risk scores to improve prediction of genomic data and the potential of multiomics to more efficiently identify potential treatment targets for further study. We also discuss the limitations of omic analyses and the barriers that must be overcome to maximize the utility of these types of studies. Finally, we address the current state of the field and future opportunities for using multiomics to better personalize heart failure treatment strategies.
Collapse
Affiliation(s)
- Christelle Lteif
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Yimei Huang
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Leonardo A Guerra
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Brian E Gawronski
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| |
Collapse
|
3
|
Drinković N, Beus M, Barbir R, Debeljak Ž, Tariba Lovaković B, Kalčec N, Ćurlin M, Bekavac A, Gorup D, Mamić I, Mandić D, Micek V, Turčić P, Günday-Türeli N, Türeli E, Vinković Vrček I. Novel PLGA-based nanoformulation decreases doxorubicin-induced cardiotoxicity. NANOSCALE 2024; 16:9412-9425. [PMID: 38650478 DOI: 10.1039/d3nr06269d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.
Collapse
Affiliation(s)
| | - Maja Beus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Željko Debeljak
- JJ Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia
- University Hospital Osijek, Osijek, Croatia
| | | | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Ana Bekavac
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Dunja Gorup
- Department of Neuroradiology, Klinik für Neuroradiology, Universitätspital Zürich Universitätsspital Zürich, 8006 Zürich, Switzerland
| | - Ivan Mamić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Petra Turčić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | | | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
- University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
4
|
Broberg O, Weismann CG, Øra I, Wiebe T, Laaksonen R, Liuba P. Ceramides: a potential cardiovascular biomarker in young adult childhood cancer survivors? EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae026. [PMID: 38659666 PMCID: PMC11042783 DOI: 10.1093/ehjopen/oeae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Aims The aim of this study was to investigate circulating ceramides involved in cardiovascular disease (CVD) in young adult childhood cancer survivors (CCS) and their correlations to previously reported adverse cardiovascular changes in this cohort. Methods and results Fifty-seven CCS and 53 healthy controls (age 20-30 years) were studied. Plasma long-chain ceramides, known to be cardiotoxic (C16:0, C18:0, C24:0, and C24:1), were analysed by mass spectrometry. The coronary event risk test 2 (CERT2) score was calculated from the ceramide data. Cardiac and carotid artery ultrasound data and lipid data available from previous studies of this cohort were used to study partial correlations with ceramide and CERT2 score data. All four analysed ceramides were elevated in CCS compared with controls (P ≤ 0.012). The greatest difference was noted for C18:0, which was 33% higher in CCS compared with controls adjusted for sex, age, and body mass index (BMI) (P < 0.001). The CERT2 score was higher in CCS compared with controls (P < 0.001). In the CCS group, 35% had a high to very high CERT2 score (7-12) when compared with 9% in the control group (P < 0.001). The CCS subgroup with a CERT2 score ≥ 7 had higher heart rate, systolic blood pressure, and higher levels of apolipoprotein B compared with CCS with a CERT2 score < 6 (P ≤ 0.011). When adjusted for age, sex, and BMI, CERT2 score was significantly correlated with arterial stiffness, growth hormone, and cranial radiotherapy (P < 0.044). Conclusion Ceramides could be important biomarkers in understanding the pathophysiology of CVD and in predicting CVD disease risk in young adult CCS.
Collapse
Affiliation(s)
- Olof Broberg
- Department of Pediatric Cardiology, Skåne University Hospital, Lasarettgatan 48, SE-221 85 Lund, Sweden
- Department of Clinical Sciences, Pediatrics, Lund University, Lasarettgatan 40, SE-221 45 Lund, Sweden
| | - Constance G Weismann
- Department of Pediatric Cardiology, Skåne University Hospital, Lasarettgatan 48, SE-221 85 Lund, Sweden
- Department of Clinical Sciences, Pediatrics, Lund University, Lasarettgatan 40, SE-221 45 Lund, Sweden
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilian University, Klinikum Grosshadern, Marchioninistr. 15, DE-81377 Munich, Germany
| | - Ingrid Øra
- Department of Clinical Sciences, Pediatrics, Lund University, Lasarettgatan 40, SE-221 45 Lund, Sweden
- Department of Pediatric Oncology, Skane University Hospital, Lasarettgatan 48, SE-221 85 Lund, Sweden
| | - Thomas Wiebe
- Department of Clinical Sciences, Pediatrics, Lund University, Lasarettgatan 40, SE-221 45 Lund, Sweden
- Department of Pediatric Oncology, Skane University Hospital, Lasarettgatan 48, SE-221 85 Lund, Sweden
| | - Reijo Laaksonen
- Finnish Cardiovascular Research Center, Tampere University, Arvo Ylpön Katu 34, P.O. Box 100, FI-33014, Finland
- Zora Biosciences, Biologinkuja 1, FI-02150 Espoo, Finland
| | - Petru Liuba
- Department of Pediatric Cardiology, Skåne University Hospital, Lasarettgatan 48, SE-221 85 Lund, Sweden
- Department of Clinical Sciences, Pediatrics, Lund University, Lasarettgatan 40, SE-221 45 Lund, Sweden
| |
Collapse
|
5
|
Tu W, Huang X, Liu S, Zhan Y, Cai X, Shao L. The m 6A demethylase fat mass and obesity-associated protein mitigates pyroptosis and inflammation in doxorubicin-induced heart failure via the toll-like receptor 4/NF-κB pathway. Cardiovasc Diagn Ther 2024; 14:158-173. [PMID: 38434564 PMCID: PMC10904293 DOI: 10.21037/cdt-23-326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/17/2023] [Indexed: 03/05/2024]
Abstract
Background Doxorubicin (Dox) can induce cardiotoxicity, thereby restricting the utility of this potent drug. Herein, the study ascertained the mechanism of the N6-methyladenosine (m6A) demethylase fat mass and obesity-associated protein (FTO) in pyroptosis and inflammation during Dox-induced heart failure (HF). Methods Serum samples were collected from HF patients for detection of the expression of FTO and toll-like receptor 4 (TLR4). Dox-treated H9C2 cardiomyocytes were chosen for in vitro HF modeling, followed by measurement of FTO and TLR4 expression. Cardiomyocytes were detected for viability, apoptosis, spatial distribution of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and the levels of lactic dehydrogenase, inflammatory factors, oxidative stress markers, and pyroptosis-related proteins. The m6A levels of mRNA were examined. RNA immunoprecipitation (RIP) and mRNA stability measurement were used to determine mRNA and protein expression, and RNA m6A dot blot and methylated-RIP assay were performed to detect m6A methylation levels. The expression of p-NF-κB p65 and p-IκB-α was measured by western blotting. Results In the serum of HF patients, FTO was elevated while TLR4 was decreased. Dox treatment reduced FTO expression and increased m6A methylation levels and TLR4 expression in H9C2 cells. Overexpression of FTO and knockdown of TLR4 reduced apoptosis, cytotoxicity, inflammation, pyroptosis, oxidative stress, NLRP3 co-localization, and fluorescence intensity in Dox-induced H9C2 cells. Mechanistically, FTO resulted in reduced binding activity of YTHDF1 to TLR4 mRNA via m6A demethylation of TLR4, thus declining TLR4, p-NF-κB p65, and p-IκB-α expression. TLR4 knockdown counteracted the effects of FTO knockdown on Dox-induced H9C2 cells. Conclusions FTO alleviated Dox-induced HF by blocking the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Weiling Tu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiao Huang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Songtao Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuliang Zhan
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | | |
Collapse
|
6
|
Zhao D, Guo K, Zhang Q, Wu Y, Ma C, He W, Jin X, Zhang X, Wang Y, Lin S, Shang H. Mechanism of XiJiaQi in the treatment of chronic heart failure: Integrated analysis by pharmacoinformatics, molecular dynamics simulation, and SPR validation. Comput Biol Med 2023; 166:107479. [PMID: 37783074 DOI: 10.1016/j.compbiomed.2023.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Chronic heart failure (CHF) is a complicated clinical syndrome with a high mortality rate. XiJiaQi (XJQ) is a traditional Chinese medicine used in the clinical treatment of CHF, but its bioactive components and their modes of action remain unknown. This study was designed to unravel the molecular mechanism of XJQ in the treatment of CHF using multiple computer-assisted and experimental methods. METHODS Pharmacoinformatics-based methods were used to explore the active components and targets of XJQ in the treatment of CHF. ADMETlab was then utilized to evaluate the pharmacokinetic and toxicological properties of core components. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were to explore the underlying mechanism of XJQ treatment. Molecular docking, surface plasmon resonance (SPR), and molecular dynamics (MD) were employed to evaluate the binding of active components to putative targets. RESULTS Astragaloside IV, formononetin, kirenol, darutoside, periplocin and periplocymarin were identified as core XJQ-related components, and IL6 and STAT3 were identified as core XJQ targets. ADME/T results indicated that periplocin and periplocymarin may have potential toxicity. GO and KEGG pathway analyses revealed that XJQ mainly intervenes in inflammation, apoptosis, diabetes, and atherosclerosis-related biological pathways. Molecular docking and SPR revealed that formononetin had a high affinity with IL6 and STAT3. Furthermore, MD simulation confirmed that formononetin could firmly bind to the site 2 region of IL6 and the DNA binding domain of STAT3. CONCLUSION This study provides a mechanistic rationale for the clinical application of XJQ. Modulation of STAT3 and IL-6 by XJQ can impact CHF, further guiding research efforts into the molecular underpinnings of CHF.
Collapse
Affiliation(s)
- Dongyang Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaijing Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yan Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenyi He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiangju Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
7
|
Zhao X, Tian Z, Sun M, Dong D. Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov 2023; 9:261. [PMID: 37495572 PMCID: PMC10372151 DOI: 10.1038/s41420-023-01565-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
8
|
Hao Y, Song T, Wang M, Li T, Zhao C, Li T, Hou Y, He H. Dual targets of lethal apoptosis and protective autophagy in liver cancer with periplocymarin elicit a limited therapeutic effect. Int J Oncol 2023; 62:44. [PMID: 36825592 PMCID: PMC9946806 DOI: 10.3892/ijo.2023.5492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiac glycosides (CGs) are candidate anticancer agents that function by increasing [Ca2+]i to induce apoptotic cell death in several types of cancer cells. However, new findings have shown that the anti‑cancer effects of CGs involve complex cell‑signal transduction mechanisms. Hence, exploring the potential mechanisms of action of CGs may provide insight into their anti‑cancer effects and thus aid in the selection of the appropriate CG. Periplocymarin (PPM), which is a cardiac glycoside, is an active ingredient extracted from Cortex periplocae. The role of PPM was evaluated in HepG2 cells and xenografted nude mice. Cell proliferation, real‑time ATP rate assays, western blotting, cell apoptosis assays, short interfering RNA transfection, the patch clamp technique, electron microscopy, JC‑1 staining, immunofluorescence staining and autophagic flux assays were performed to evaluate the function and regulatory mechanisms of PPM in vitro. The in vivo activity of the PPM was assessed using a mouse xenograft model. The present study demonstrated that PPM synchronously activated lethal apoptosis and protective autophagy in liver cancer, and the initiation of autophagy counteracted the inherent pro‑apoptotic capacity and impaired the anti‑cancer effects. Specifically, PPM exerted a pro‑-apoptotic effect in HepG2 cells and activated macroautophagy by initiation of the AMPK/ULK1 and mTOR signaling pathways. Activation of macroautophagy counteracted the pro‑apoptotic effects of PPM, but when it was combined with an autophagy inhibitor, the anti‑cancer effects of PPM in mice bearing HepG2 xenografts were observed. Collectively, these results indicated that a self‑limiting effect impaired the pro‑apoptotic effects of PPM in liver cancer, but when combined with an autophagy inhibitor, it may serve as a novel therapeutic option for the management of liver cancer.
Collapse
Affiliation(s)
- Yuanyuan Hao
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China,Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, Hebei 050035, P.R. China,New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei 050035, P.R. China
| | - Tao Song
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China,Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, Hebei 050035, P.R. China,New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei 050035, P.R. China
| | - Mingye Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Tongtong Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Chi Zhao
- Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ting Li
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yunlong Hou
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China,Hebei Yiling Chinese Medicine Research Institute, Shijiazhuang, Hebei 050035, P.R. China,New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, Hebei 050035, P.R. China,Correspondence to: Professor Yunlong Hou, College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, Hebei 050200, P.R. China, E-mail:
| | - Hongjiang He
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China,Professor Hongjiang He, Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081, P.R. China, E-mail:
| |
Collapse
|
9
|
Bi Y, Xu H, Wang X, Zhu H, Ge J, Ren J, Zhang Y. FUNDC1 protects against doxorubicin-induced cardiomyocyte PANoptosis through stabilizing mtDNA via interaction with TUFM. Cell Death Dis 2022; 13:1020. [PMID: 36470869 PMCID: PMC9723119 DOI: 10.1038/s41419-022-05460-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is an effective anthracycline chemotherapeutic anticancer drug with its life-threatening cardiotoxicity severely limiting its clinical application. Mitochondrial damage-induced cardiomyocyte death is considered an essential cue for DOX cardiotoxicity. FUN14 domain containing 1 (FUNDC1) is a mitochondrial membrane protein participating in the regulation of mitochondrial integrity in multiple diseases although its role in DOX cardiomyopathy remains elusive. Here, we examined whether PANoptosis, a novel type of programmed cell death closely associated with mitochondrial damage, was involved in DOX-induced heart injury, and FUNDC1-mediated regulation of cardiomyocyte PANoptosis, if any. FUNDC1 was downregulated in heart tissues in patients with dilated cardiomyopathy (DCM) and DOX-challenged mice. FUNDC1 deficiency aggravated DOX-induced cardiac dysfunction, mitochondrial injury, and cardiomyocyte PANoptosis. Further examination revealed that FUNDC1 countered cytoplasmic release of mitochondrial DNA (mtDNA) and activation of PANoptosome through interaction with mitochondrial Tu translation elongation factor (TUFM), a key factor in the translational expression and repair of mitochondrial DNA, via its 96-133 amino acid domain. TUFM intervention reversed FUNDC1-elicited protection against DOX-induced mtDNA cytosolic release and cardiomyocyte PANoptosis. Our findings shed light toward a beneficial role of FUNDC1 in DOX cardiotoxicity and cardiomyocyte PANoptosis, thus offering therapeutic promises in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yaguang Bi
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032 Shanghai, China ,National Clinical Research Center for Interventional Medicine, 200032 Shanghai, China
| | - Haixia Xu
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032 Shanghai, China ,grid.440642.00000 0004 0644 5481Department of Cardiology, Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu China
| | - Xiang Wang
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032 Shanghai, China ,National Clinical Research Center for Interventional Medicine, 200032 Shanghai, China
| | - Hong Zhu
- grid.16821.3c0000 0004 0368 8293Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China
| | - Junbo Ge
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032 Shanghai, China ,National Clinical Research Center for Interventional Medicine, 200032 Shanghai, China
| | - Jun Ren
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032 Shanghai, China ,National Clinical Research Center for Interventional Medicine, 200032 Shanghai, China ,grid.34477.330000000122986657Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
| | - Yingmei Zhang
- grid.8547.e0000 0001 0125 2443Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 200032 Shanghai, China ,National Clinical Research Center for Interventional Medicine, 200032 Shanghai, China
| |
Collapse
|
10
|
Metabolomic Profiles on Antiblastic Cardiotoxicity: New Perspectives for Early Diagnosis and Cardioprotection. J Clin Med 2022; 11:jcm11226745. [PMID: 36431222 PMCID: PMC9693331 DOI: 10.3390/jcm11226745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antiblastic drugs-induced cardiomyopathy remains a relevant cause of morbidity and mortality, during and after chemotherapy, despite the progression in protective therapy against cardiovascular diseases and myocardial function. In the last few decades, many groups of researchers have focused their attention on studying the metabolic profile, first in animals, and, subsequently, in humans, looking for profiles which could be able to predict drug-induced cardiotoxicity and cardiovascular damage. In clinical practice, patients identified as being at risk of developing cardiotoxicity undergo a close follow-up and more tailored therapies. Injury to the heart can be a consequence of both new targeted therapies, such as tyrosine kinase inhibitors, and conventional chemotherapeutic agents, such as anthracyclines. This review aims to describe all of the studies carried on this topic of growing interest.
Collapse
|
11
|
Tang XY, Dai ZQ, Zeng JX, Li ZT, Fan CL, Yao ZH, Yao XS, Dai Y. Pharmacokinetics, hepatic disposition, and heart tissue distribution of fourteen compounds in rat after oral administration of Qi-Li-Qiang-Xin capsule via ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. J Sep Sci 2022; 45:2177-2189. [PMID: 35478323 DOI: 10.1002/jssc.202101008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
In the present study, a specific and sensitive approach using ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry was developed and validated for the quantitative analysis of fourteen constituents in rat plasma, liver and heart. The method was fully validated and successfully applied to pharmacokinetic, hepatic disposition and heart tissue distribution studies of fourteen compounds after the oral administration of Qi-Li-Qiang-Xin capsule. Ginsenoside Rb1, alisol A, astragaloside IV, and periplocymarin were found to be highly exposed in rat plasma, while toxic components such as hypaconitine, mesaconitine, and periplocin had low circulation levels in vivo. Moreover, sinapine thiocyanate, neoline, formononetin, calycosin, and alisol A exhibited significant liver first-pass effects. Notably, high levels of alisol A, periplocymarin, benzoylmesaconine, and benzoylhypaconine were observed in the heart. Based on high exposure and appropriate pharmacokinetic features in the systemic plasma and heart, astragaloside IV, ginsenoside Rb1, periplocymarin, benzoylmesaconine, benzoylhypaconine and alisol A can be considered as the main potentially effective components. Ultimately, the results provide relevant information for discovery of effective substances, as well as further anti-heart failure action mechanism investigations of Qi-Li-Qiang-Xin capsule. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Xing Zeng
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Zi-Ting Li
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Cai-Lian Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|