1
|
Liu CM, Lin FJ, Chhay C, Chen YC, Lin YK, Lu YY, Chan CS, Higa S, Chen SA, Chen YJ. Ibrutinib, a Bruton's tyrosine kinase inhibitor, regulates ventricular electromechanical activities and enhances arrhythmogenesis. Eur J Pharmacol 2024; 977:176675. [PMID: 38825303 DOI: 10.1016/j.ejphar.2024.176675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Ibrutinib, a Bruton's tyrosine kinase inhibitor used in cancer therapy, exerts ventricular proarrhythmic effects; however, the underlying mechanisms remain unclear. Excitation-contraction coupling (E-C) disorders are pivotal for the genesis of ventricular arrhythmias (VAs), which arise mainly from the right ventricular outflow tract (RVOT). In this study, we aimed to comprehensively investigate whether ibrutinib regulates the electromechanical activities of the RVOT, leading to enhanced arrhythmogenesis, and explore the underlying mechanisms. METHODS We utilized conventional microelectrodes to synchronously record electrical and mechanical responses in rabbit RVOT tissue preparations before and after treatment with ibrutinib (10, 50, and 100 nM) and investigated their electromechanical interactions and arrhythmogenesis during programmed electrical stimulation. The fluorometric ratio technique was used to measure intracellular calcium concentration in isolated RVOT myocytes. RESULTS Ibrutinib (10-100 nM) shortened the action potential duration. Ibrutinib at 100 nM significantly increased pacing-induced ventricular tachycardia (VT) (from 0% to 62.5%, n = 8, p = 0.025). Comparisons between pacing-induced VT and non-VT episodes demonstrated that VT episodes had a greater increase in contractility than that of non-VT episodes (402.1 ± 41.4% vs. 232.4 ± 29.2%, p = 0.003). The pretreatment of ranolazine (10 μM, a late sodium current blocker) prevented the occurrence of ibrutinib-induced VAs. Ibrutinib (100 nM) increased late sodium current, reduced intracellular calcium transients, and enhanced calcium leakage in RVOT myocytes. CONCLUSION Ibrutinib increased the risk of VAs in the RVOT due to dysregulated electromechanical responses, which can be attenuated by ranolazine or apamin.
Collapse
Affiliation(s)
- Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fong-Jhih Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chheng Chhay
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Department, Faculty of Medicine, University of Health Sciences, Phnom Penh, Cambodia
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Chao-Shun Chan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; National Chung Hsing University, Taichung, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Mititelu A, Onisâi MC, Roșca A, Vlădăreanu AM. Current Understanding of Immune Thrombocytopenia: A Review of Pathogenesis and Treatment Options. Int J Mol Sci 2024; 25:2163. [PMID: 38396839 PMCID: PMC10889445 DOI: 10.3390/ijms25042163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The management of immune thrombocytopenia (ITP) and the prediction of patient response to therapy still represent a significant and constant challenge in hematology. ITP is a heterogeneous disease with an unpredictable evolution. Although the pathogenesis of ITP is currently better known and its etiology has been extensively studied, up to 75% of adult patients with ITP may develop chronicity, which represents a significant burden on patients' quality of life. A major risk of ITP is bleeding, but knowledge on the exact relationship between the degree of thrombocytopenia and bleeding symptoms, especially at a lower platelet count, is lacking. The actual management of ITP is based on immune suppression (corticosteroids and intravenous immunoglobulins), or the use of thrombopoietin receptor agonists (TPO-RAs), rituximab, or spleen tyrosine kinase (Syk) inhibitors. A better understanding of the underlying pathology has facilitated the development of a number of new targeted therapies (Bruton's tyrosine kinase inhibitors, neonatal Fc receptors, strategies targeting B and plasma cells, strategies targeting T cells, complement inhibitors, and newer TPO-RAs for improving megakaryopoiesis), which seem to be highly effective and well tolerated and result in a significant improvement in patients' quality of life. The disadvantage is that there is a lack of knowledge of the predictive factors of response to treatments, which would help in the development of an optimized treatment algorithm for selected patients.
Collapse
Affiliation(s)
- Alina Mititelu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| | - Minodora-Cezarina Onisâi
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| | - Adrian Roșca
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania;
| | - Ana Maria Vlădăreanu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| |
Collapse
|
3
|
Gawaz M, Geisler T, Borst O. Current concepts and novel targets for antiplatelet therapy. Nat Rev Cardiol 2023; 20:583-599. [PMID: 37016032 DOI: 10.1038/s41569-023-00854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
Platelets have a crucial role in haemostasis and atherothrombosis. Pharmacological control of platelet hyper-reactivity has become a cornerstone in the prevention of thrombo-ischaemic complications in atherosclerotic diseases. Current antiplatelet therapies substantially improve clinical outcomes in patients with coronary artery disease, but at the cost of increased risk of bleeding. Beyond their role in thrombosis, platelets are known to regulate inflammatory (thrombo-inflammatory) and microcirculatory pathways. Therefore, controlling platelet hyper-reactivity might have implications for both tissue inflammation (myocardial ischaemia) and vascular inflammation (vulnerable plaque formation) to prevent atherosclerosis. In this Review, we summarize the pathophysiological role of platelets in acute myocardial ischaemia, vascular inflammation and atherosclerotic progression. Furthermore, we highlight current clinical concepts of antiplatelet therapy that have contributed to improving patient care and have facilitated more individualized therapy. Finally, we discuss novel therapeutic targets and compounds for antiplatelet therapy that are currently in preclinical development, some of which have a more favourable safety profile than currently approved drugs with regard to bleeding risk. These novel antiplatelet targets might offer new strategies to treat cardiovascular disease.
Collapse
Affiliation(s)
- Meinrad Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - Tobias Geisler
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Xiao Z, Murakhovskaya I. Rituximab resistance in ITP and beyond. Front Immunol 2023; 14:1215216. [PMID: 37575230 PMCID: PMC10422042 DOI: 10.3389/fimmu.2023.1215216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses innate and adaptive immune responses, as well as megakaryocyte dysfunction. Rituximab is administered in relapsed cases and has the added benefit of inducing treatment-free remission in over 50% of patients. Nevertheless, the responses to this therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and plasma cells play a role in developing resistance. To overcome this resistance, targeting these pathways through splenectomy and novel therapies that target FcγR pathway, FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will summarize the pathogenetic mechanisms implicated in rituximab resistance and examine the potential therapeutic interventions to overcome it. This review will explore the efficacy of established therapies, as well as novel therapeutic approaches and agents currently in development.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
5
|
Smith CW, Harbi MH, Garcia‐Quintanilla L, Rookes K, Brown H, Poulter NS, Watson SP, Nicolson PLR, Thomas MR. The Btk inhibitor AB-95-LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and platelet procoagulant activity. J Thromb Haemost 2022; 20:2939-2952. [PMID: 36239466 PMCID: PMC9827830 DOI: 10.1111/jth.15899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND New antithrombotic therapies with less effect on bleeding are needed for coronary artery disease. The Btk inhibitor ibrutinib blocks atherosclerotic plaque-mediated thrombus formation. However, it is associated with increased bleeding, possibly due to non-Btk-mediated effects. Btk-deficient patients do not have bleeding issues, suggesting selective Btk inhibition as a promising antithrombotic strategy. OBJECTIVES To compare the antithrombotic effects of the highly selective Btk inhibitor AB-95-LH34 (LH34) with ibrutinib. METHODS Glycoprotein VI and G-protein coupled receptor-mediated platelet function and signaling were analyzed in healthy human donor platelets by lumi-aggregometry, flow adhesion, and western blot following 1 h treatment with inhibitors in vitro. RESULTS LH34 showed similar inhibition of Btk-Y223 phosphorylation as ibrutinib, but had no off-target inhibition of Src-Y418 phosphorylation. Similar dose-dependent inhibition of aggregation to atherosclerotic plaque material was observed for both. However, in response to Horm collagen, which also binds integrin α2β1, LH34 exhibited less marked inhibition than ibrutinib. Both LH34 and ibrutinib inhibited platelet adhesion and aggregation to plaque material at arterial shear. Ibrutinib demonstrated the most potent effect, with complete blockade at high concentrations. Platelet activation (P-selectin) and procoagulant activity (phosphatidylserine exposure) in thrombi were inhibited by LH34 and completely blocked by ibrutinib at high concentrations. Furthermore, plaque-induced thrombin generation was reduced by higher concentrations of LH34 and ibrutinib. CONCLUSIONS LH34 potently inhibits atherosclerotic plaque-induced thrombus formation and procoagulant platelet activity in vitro, with less off-target inhibition of Src than ibrutinib, suggesting it is a promising antiplatelet therapy with the potential for reduced bleeding side effects.
Collapse
Affiliation(s)
- Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Maan H. Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Pharmacology and Toxicology Department, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Lourdes Garcia‐Quintanilla
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Kieran Rookes
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Helena Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
6
|
Li M, Liu L, Ding B, Song X, Xia A, Han Y, Song Y, Wei X, Zhou H. Refractory/relapse thrombocytopenia in a patient with Evans' syndrome successfully treated with zanubrutinib. Br J Haematol 2022; 199:e37-e42. [PMID: 36223900 DOI: 10.1111/bjh.18490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Menguan Li
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Liu Liu
- Department of Hematology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingjie Ding
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Xuewen Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Ao Xia
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| | - Yu Han
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yongping Song
- Department of Hematology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Hemostasis and Thrombosis Diagnostic Engineering Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
7
|
Ibrutinib Inhibits Angiogenesis and Tumorigenesis in a BTK-Independent Manner. Pharmaceutics 2022; 14:pharmaceutics14091876. [PMID: 36145624 PMCID: PMC9506105 DOI: 10.3390/pharmaceutics14091876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
BTK inhibitor (BTKi) Ibrutinib carries an increased bleeding risk compared to more selective BTKis Acalabrutinib and Zanubrutinib, however, its impact on vascular endothelium remains unknown. In this study, we found that Ibrutinib induced stronger cytotoxic effect on endothelial cells than Zanubrutinib, however, Acalabrutinib cytotoxicity was extremely weak. RNA-seq, followed by KEGG analysis and quantitative RT-PCR validation, was conducted to identify the differential apoptotic target genes of BTKis, leading to their distinct cytotoxic effects on endothelial cells, which showed that Ibrutinib and Zanubrutinib dramatically modulated the expression of critical apoptotic genes, GADD45B, FOS, and BCL2A1, among which FOS and GADD45B were upregulated more significantly by Ibrutinib than Zanubrutinib, however, Acalabrutinib downregulated BCL2A1 moderately and was not able to modulate the expression of FOS and GADD45B. Next, we performed in vitro angiogenesis assays and found that Ibrutinib was more able to induce endothelial dysfunction than Zanubrutinib via stimulating more BMP4 expression, however, Acalabrutinib had no such effect. Especially, the capacity of Ibrutinib to induce endothelial dysfunction can be antagonized by targeting BMP4. Accordingly, Ibrutinib, as an angiogenesis inhibitor, inhibited ovarian and breast cancer progression in vivo. Collectively, our findings addressed a novel molecular basis underlying Ibrutinib-induced endothelial cell dysfunction and suggested the potential application of Ibrutinib to treat angiogenesis-dependent cancers.
Collapse
|
8
|
Leitinger DE, Kaplan DZ. BTK Inhibitors in Haematology: Beyond B Cell Malignancies. Transfus Med Rev 2022; 36:239-245. [DOI: 10.1016/j.tmrv.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 11/27/2022]
|
9
|
Favaloro EJ, Mohammed S, Vong R, Chapman K, Kershaw G, Just S, Connelly L, Ryan M, Zebeljan D, Brighton T, Pasalic L. Harmonizing platelet function analyzer testing and reporting in a large laboratory network. Int J Lab Hematol 2022; 44:934-944. [PMID: 35754202 PMCID: PMC9545980 DOI: 10.1111/ijlh.13907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The platelet function analyzer (PFA) is a popular platelet function screening instrument, highly sensitive to von Willebrand disease (VWD) and to aspirin therapy, with moderate sensitivity to defects in platelet function and/or deficiencies in platelet number. There are two models, the original PFA-100 and the contemporary PFA-200. Normal reference ranges (NRRs) provided by the manufacturer are the same for both models, instead being based on the type of test cartridge, for which there are two main ones: collagen/epinephrine (C/Epi) and collagen/adenosine diphosphate (C/ADP). METHODS Comparative evaluations of PFA testing and reporting in six different sites of a large pathology network, aiming to harmonize NRRs and test reporting across all network sites. A separate comparative study of testing a range of samples (n > 150) on a PFA-100 versus that on a PFA-200. Review of contemporary literature. RESULTS Each site was identified to have a different reporting NRR, which after consolidating data permitted establishment of an agreed harmonized NRR for use across the network (C/Epi: 90-160; C/ADP: 70-124; based on n > 180). Similarly, each site reported and interpreted results in different ways, and after discussion and consolidation, a harmonized approach to interpretation and reporting was achieved. The separate comparative study of PFA-100 versus PFA-200 testing confirmed instrument equivalence. CONCLUSION We achieved harmonized NRRs and reporting for PFA testing across a large pathology network. Our approach may be useful for other laboratory networks wishing to harmonize PFA testing.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Centres for Thrombosis and Haemostasis, Westmead, New South Wales, Australia.,Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Soma Mohammed
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Ronny Vong
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Kent Chapman
- Haematology, NSW Health Pathology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Geoffrey Kershaw
- Haematology, NSW Health Pathology, Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sarah Just
- Haematology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lynne Connelly
- Haematology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Michael Ryan
- Haematology, NSW Health Pathology, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - Diane Zebeljan
- Haematology, NSW Health Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Timothy Brighton
- Haematology, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Leonardo Pasalic
- Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Centres for Thrombosis and Haemostasis, Westmead, New South Wales, Australia.,Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
10
|
Robak E, Robak T. Bruton's Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives. J Clin Med 2022; 11:2807. [PMID: 35628931 PMCID: PMC9145705 DOI: 10.3390/jcm11102807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The use of Bruton's tyrosine kinase (BTK) inhibitors has changed the management of patients with B-cell lymphoid malignancies. BTK is an important molecule that interconnects B-cell antigen receptor (BCR) signaling. BTK inhibitors (BTKis) are classified into three categories, namely covalent irreversible inhibitors, covalent reversible inhibitors, and non-covalent reversible inhibitors. Ibrutinib is the first covalent, irreversible BTK inhibitor approved in 2013 as a breakthrough therapy for chronic lymphocytic leukemia patients. Subsequently, two other covalent, irreversible, second-generation BTKis, acalabrutinib and zanubrutinib, have been developed for lymphoid malignancies to reduce the ibrutinib-mediated adverse effects. More recently, irreversible and reversible BTKis have been under development for immune-mediated diseases, including autoimmune hemolytic anemia, immune thrombocytopenia, multiple sclerosis, pemphigus vulgaris, atopic dermatitis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, and chronic spontaneous urticaria, among others. This review article summarizes the preclinical and clinical evidence supporting the role of BTKis in various autoimmune, allergic, and inflammatory conditions.
Collapse
Affiliation(s)
- Ewa Robak
- Department of Dermatology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| |
Collapse
|
11
|
Leberzammer J, Agten SM, Blanchet X, Duan R, Ippel H, Megens RT, Schulz C, Aslani M, Duchene J, Döring Y, Jooss NJ, Zhang P, Brandl R, Stark K, Siess W, Jurk K, Heemskerk JW, Hackeng TM, Mayo KH, Weber C, von Hundelshausen P. Targeting platelet-derived CXCL12 impedes arterial thrombosis. Blood 2022; 139:2691-2705. [PMID: 35313337 PMCID: PMC11022931 DOI: 10.1182/blood.2020010140] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbβ3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Stijn M. Agten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Rundan Duan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Hans Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Remco T.A. Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Schulz
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Natalie J. Jooss
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Pengyu Zhang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Leibniz Institut für Analytische Wissenschaften–ISAS-e.V., Dortmund, Germany
| | - Richard Brandl
- Institute for Vascular Surgery and Phlebology am Marienplatz, Munich, Germany
| | - Konstantin Stark
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johan W.M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Maastricht, The Netherlands
| | - Tilman M. Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, Minneapolis, MN
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|