1
|
Baker LA, Minor KM, Tate N, Furrow E. Whole blood gene expression analysis of spontaneous hypertriglyceridemia in dogs suggests an underlying pro-thrombotic process. PLoS One 2024; 19:e0313343. [PMID: 39531449 PMCID: PMC11556679 DOI: 10.1371/journal.pone.0313343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertriglyceridemia (HTG) is influenced by multiple genetic and environmental factors. Spontaneous, idiopathic HTG is common in the Miniature Schnauzer dog and presumed to have a strong genetic influence in this breed. To define genes that are differentially expressed in dogs with HTG, we performed RNA sequencing on peripheral blood of 13 Miniature Schnauzers with HTG and 18 controls. We identified 110 differentially expressed genes (DEGs). Pathway analysis suggests an ongoing pro-thrombotic, endothelial activation process in dogs with HTG. The gene with the largest fold change (5.4 ± 1.4, Padj = 4.4E-04), SERPINE1, encodes plasminogen activator inhibitor 1 (PAI-1), a known risk factor for atherosclerosis and thrombosis. Other top DEGs, including SHANK3, MMRN1, and FZD7, are involved in endothelial activation. Two of the top DEGs, ARHGAP29 and ARHGAP21, inhibit pro-thrombotic pathways and are potentially protective of disease sequelae. Top DEGs, including SERPINE1 and ARHGAP21, have also been linked to metabolic syndrome or its features (e.g. insulin resistance) in humans and animal models. Our findings indicate that HTG in the Miniature Schnauzer dog has similar features to HTG and metabolic syndrome in humans, highlighting the potential use of the dog as a spontaneous model for further research into the etiology and effects of HTG.
Collapse
Affiliation(s)
- Lauren A. Baker
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katie M. Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Nicole Tate
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva Furrow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
2
|
Gao T, Dang W, Jiang Z, Jiang Y. Identifying the impact of ARHGAP and MAP gene families on autism spectrum disorders. PLoS One 2024; 19:e0306759. [PMID: 39514479 PMCID: PMC11548836 DOI: 10.1371/journal.pone.0306759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/22/2024] [Indexed: 11/16/2024] Open
Abstract
The rising incidence of Autism Spectrum Disorder (ASD) has become a major concern, affecting children's psychological well-being and placing a significant strain on healthcare systems. Despite its impact, the etiological mechanisms underpinning ASD remain elusive. This study leveraged dorsolateral prefrontal cortex gene data from 452 individuals of European descent, sourced from the CommonMindConsortium, and examined ASD-related gene expression data from the Gene Expression Omnibus (GEO) database (GSE18123), along with Genome-Wide Association Studies (GWAS) data from the Lundbeck Foundation Integrated Psychiatric Research and Psychiatric Genomics Consortium. Expression quantitative trait loci data were sourced from the GTExv8 database. We employed Transcriptome-Wide Association Studies (TWAS) and Weighted Gene Co-expression Network Analysis (WGCNA) to pinpoint genes within ASD-associated susceptibility gene families (ARHGAP, MAP). Four genes-ARHGAP27, MAPT, ARHGAP19, and MAP1B-were scrutinized, and their biological implications were elucidated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Protein-Protein Interaction (PPI) analysis and conditional analysis within the TWAS framework helped identify pivotal genes (ARHGAP27, MAPT). A subsequent verification phase involving Mendelian Randomization (MR) evaluated the potential causal links between the identified genes and ASD. The findings revealed no causal association between ARHGAP19, MAP1B, and ASD. In contrast, significant causal relationships were established for ARHGAP27 and MAPT, suggesting that ARHGAP27 may elevate ASD risk as a susceptibility gene, whereas MAPT appears to reduce the risk as a protective gene.
Collapse
Affiliation(s)
- Tianci Gao
- College of Clinical Medicine, Jiamusi University, Jiamusi, HeilongJiang Province, China
| | - Wenjun Dang
- Jiamusi College, HeiLongJiang University of Chinese Medicine, Jiamusi, HeilongJiang Province, China
| | - Zhimei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, HeilongJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang Province, Jiamusi, Heilongjiang Province, China
| | - Yuwei Jiang
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, HeilongJiang Province, China
- Child Neurological Rehabilitation Key Laboratory of Heilongjiang Province, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
3
|
Garcia-Ovejero D, Beyerer E, Mach O, Leister I, Strowitzki M, Wutte C, Maier D, Kramer JL, Aigner L, Arevalo-Martin A, Grassner L. Untargeted blood serum proteomics identifies novel proteins related to neurological recovery after human spinal cord injury. J Transl Med 2024; 22:666. [PMID: 39020346 PMCID: PMC11256486 DOI: 10.1186/s12967-024-05344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Evelyn Beyerer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Iris Leister
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Christof Wutte
- Department of Neurosurgery, BG Trauma Center, Murnau, Germany
| | - Doris Maier
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - John Lk Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain.
| | - Lukas Grassner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
- Spinal Cord Injury Center, BG Trauma Center, Murnau, Germany.
- ParaMove, SCI Research Unit, BG Tauma Center Murnau, Germany and Paracelsus Medical University Salzburg, Salzburg, Austria.
- Department of Neurosurgery, Christian Doppler Clinic, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
4
|
O'Donoghue L, Smolenski A. Roles of G proteins and their GTPase-activating proteins in platelets. Biosci Rep 2024; 44:BSR20231420. [PMID: 38808367 PMCID: PMC11139668 DOI: 10.1042/bsr20231420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Platelets are small anucleate blood cells supporting vascular function. They circulate in a quiescent state monitoring the vasculature for injuries. Platelets adhere to injury sites and can be rapidly activated to secrete granules and to form platelet/platelet aggregates. These responses are controlled by signalling networks that include G proteins and their regulatory guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Recent proteomics studies have revealed the complete spectrum of G proteins, GEFs, and GAPs present in platelets. Some of these proteins are specific for platelets and very few have been characterised in detail. GEFs and GAPs play a major role in setting local levels of active GTP-bound G proteins in response to activating and inhibitory signals encountered by platelets. Thus, GEFs and GAPs are highly regulated themselves and appear to integrate G protein regulation with other cellular processes. This review focuses on GAPs of small G proteins of the Arf, Rab, Ras, and Rho families, as well as of heterotrimeric G proteins found in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| | - Albert Smolenski
- UCD School of Medicine, University College Dublin, UCD Conway Institute, Belfield, Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green 123, Dublin 2, Ireland
| |
Collapse
|
5
|
Guan IA, Liu JST, Sawyer RC, Li X, Jiao W, Jiramongkol Y, White MD, Hagimola L, Passam FH, Tran DP, Liu X, Schoenwaelder SM, Jackson SP, Payne RJ, Liu X. Integrating Phenotypic and Chemoproteomic Approaches to Identify Covalent Targets of Dietary Electrophiles in Platelets. ACS CENTRAL SCIENCE 2024; 10:344-357. [PMID: 38435523 PMCID: PMC10906253 DOI: 10.1021/acscentsci.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear. This study explores the irreversible engagement of 23 electrophilic phytochemicals with platelets, unveiling the unique antiplatelet selectivity of sulforaphane (SFN). SFN impairs platelet responses to adenosine diphosphate (ADP) and a thromboxane A2 receptor agonist while not affecting thrombin and collagen-related peptide activation. It also substantially reduces platelet thrombus formation under arterial flow conditions. Using an alkyne-integrated probe, protein disulfide isomerase A6 (PDIA6) was identified as a rapid kinetic responder to SFN. Mechanistic profiling studies revealed SFN's nuanced modulation of PDIA6 activity and substrate specificity. In an electrolytic injury model of thrombosis, SFN enhanced the thrombolytic activity of recombinant tissue plasminogen activator (rtPA) without increasing blood loss. Our results serve as a catalyst for further investigations into the preventive and therapeutic mechanisms of dietary antiplatelets, aiming to enhance the clot-busting power of rtPA, currently the only approved therapeutic for stroke recanalization that has significant limitations.
Collapse
Affiliation(s)
- Ivy A. Guan
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Joanna S. T. Liu
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renata C. Sawyer
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Xiang Li
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63110, United States
- McDonnell
Genome Institute, Washington University
in St. Louis, St. Louis, Missouri 63108, United States
| | - Wanting Jiao
- Ferrier Research
Institute, Victoria University of Wellington, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yannasittha Jiramongkol
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark D. White
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
| | - Lejla Hagimola
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Freda H. Passam
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Denise P. Tran
- Sydney
Mass Spectrometry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoming Liu
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone M. Schoenwaelder
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shaun P. Jackson
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xuyu Liu
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| |
Collapse
|
6
|
Thom CS, Davenport P, Fazelinia H, Liu ZJ, Zhang H, Ding H, Roof J, Spruce LA, Ischiropoulos H, Sola-Visner M. Phosphoproteomics reveals content and signaling differences between neonatal and adult platelets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557268. [PMID: 37745418 PMCID: PMC10515911 DOI: 10.1101/2023.09.13.557268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background and Objective Recent clinical studies have shown that transfusions of adult platelets increase morbidity and mortality in preterm infants. Neonatal platelets are hyporesponsive to agonist stimulation, and emerging evidence suggests developmental differences in platelet immune functions. This study was designed to compare the proteome and phosphoproteome of resting adult and neonatal platelets. Methods We isolated resting umbilical cord blood-derived platelets from healthy full term neonates (n=9) and resting blood platelets from healthy adults (n=7), and compared protein and phosphoprotein contents using data independent acquisition mass spectrometry. Results We identified 4745 platelet proteins with high confidence across all samples. Adult and neonatal platelets clustered separately by principal component analysis. Adult platelets were significantly enriched for immunomodulatory proteins, including β2 microglobulin and CXCL12, whereas neonatal platelets were enriched for ribosomal components and proteins involved in metabolic activities. Adult platelets were enriched for phosphorylated GTPase regulatory enzymes and proteins participating in trafficking, which may help prime them for activation and degranulation. Neonatal platelets were enriched for phosphorylated proteins involved in insulin growth factor signaling. Conclusions Using state-of-the-art mass spectrometry, our findings expanded the known neonatal platelet proteome and identified important differences in protein content and phosphorylation compared with adult platelets. These developmental differences suggested enhanced immune functions for adult platelets and presence of a molecular machinery related to platelet activation. These findings are important to understanding mechanisms underlying key platelet functions as well as the harmful effects of adult platelet transfusions given to preterm infants.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hossein Fazelinia
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhi-Jian Liu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Haorui Zhang
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hua Ding
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Proteomics Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Song W, Wu X, Cheng C, Li D, Chen J, Zhang W. ARHGAP9 knockdown promotes lung adenocarcinoma metastasis by activating Wnt/β-catenin signaling pathway via suppressing DKK2. Genomics 2023; 115:110684. [PMID: 37454937 DOI: 10.1016/j.ygeno.2023.110684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/08/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
This study aims to elucidate the effect of ARHGAP9 on lung adenocarcinoma (LUAD) metastasis, and preliminarily explore its molecular mechanism. As a result, we found that ARHGAP9 was downregulated and correlated with poor prognosis of LUAD. ARHGAP9 knockdown promoted LUAD cell proliferation, migration and invasion, inhibited cell apoptosis and reduced G0G1 cell cycle arrest, in contrast to the results of ARHGAP9 overexpression. Further RNA sequencing analysis demonstrated that ARHGAP9 knockdown in H1299 cells significantly reduced DKK2 (dickkopf related protein 2) expression. Silencing ARHGAP9 in H1299 cells while overexpressing DKK2, DKK2 reversed the promoted effects of ARHGAP9 knockdown on LUAD cell proliferation, migration and invasion. Meanwhile, the activity of Wnt/β-catenin signaling pathway was also reduced. Taken together, these data indicated that ARHGAP9 knockdown promoted LUAD metastasis by activating Wnt/β-catenin signaling pathway via suppressing DKK2. This may provide a new strategy for LUAD treatment.
Collapse
Affiliation(s)
- Wenping Song
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China; Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Cancer Hospital, Zhengzhou 450008, China; Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Cheng Cheng
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ding Li
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jinhua Chen
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
8
|
Alfaro GF, Palombo V, D’Andrea M, Cao W, Zhang Y, Beever J, Muntifering RB, Pacheco WJ, Rodning SP, Wang X, Moisá SJ. Hepatic transcript profiling in beef cattle: Effects of rumen-protected niacin supplementation. PLoS One 2023; 18:e0289409. [PMID: 37535643 PMCID: PMC10399858 DOI: 10.1371/journal.pone.0289409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
The objective of our study was to assess the effect of rumen-protected niacin supplementation on the transcriptome of liver tissue in growing Angus × Simmental steers and heifers through RNA-seq analysis. Consequently, we wanted to assess the known role of niacin in the physiological processes of vasodilation, detoxification, and immune function in beef hepatic tissue. Normal weaned calves (~8 months old) were provided either a control diet or a diet supplemented with rumen-protected niacin (6 g/hd/d) for a 30-day period, followed by a liver biopsy. We observed a significant list of changes at the transcriptome level due to rumen-protected niacin supplementation. Several metabolic pathways revealed potential positive effects to the animal's liver metabolism due to administration of rumen-protected niacin; for example, a decrease in lipolysis, apoptosis, inflammatory responses, atherosclerosis, oxidative stress, fibrosis, and vasodilation-related pathways. Therefore, results from our study showed that the liver transcriptional machinery switched several metabolic pathways to a condition that could potentially benefit the health status of animals supplemented with rumen-protected niacin. In conclusion, based on the results of our study, we can suggest the utilization of rumen-protected niacin supplementation as a nutritional strategy could improve the health status of growing beef cattle in different beef production stages, such as backgrounding operations or new arrivals to a feedlot.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Mariasilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Wenqi Cao
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Yue Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Jonathan Beever
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Russell B. Muntifering
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
- Cooperative Extension Service, University of Kentucky, Kentucky, Lexington, United States of America
| | - Wilmer J. Pacheco
- Department of Poultry Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
9
|
O'Donoghue L, Comer SP, Hiebner DW, Schoen I, von Kriegsheim A, Smolenski A. RhoGAP6 interacts with COPI to regulate protein transport. Biochem J 2023; 480:1109-1127. [PMID: 37409526 DOI: 10.1042/bcj20230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
RhoGAP6 is the most highly expressed GTPase-activating protein (GAP) in platelets specific for RhoA. Structurally RhoGAP6 contains a central catalytic GAP domain surrounded by large, disordered N- and C-termini of unknown function. Sequence analysis revealed three conserved consecutive overlapping di-tryptophan motifs close to the RhoGAP6 C-terminus which were predicted to bind to the mu homology domain (MHD) of δ-COP, a component of the COPI vesicle complex. We confirmed an endogenous interaction between RhoGAP6 and δ-COP in human platelets using GST-CD2AP which binds an N-terminal RhoGAP6 SH3 binding motif. Next, we confirmed that the MHD of δ-COP and the di-tryptophan motifs of RhoGAP6 mediate the interaction between both proteins. Each of the three di-tryptophan motifs appeared necessary for stable δ-COP binding. Proteomic analysis of other potential RhoGAP6 di-tryptophan motif binding partners indicated that the RhoGAP6/δ-COP interaction connects RhoGAP6 to the whole COPI complex. 14-3-3 was also established as a RhoGAP6 binding partner and its binding site was mapped to serine 37. We provide evidence of potential cross-regulation between 14-3-3 and δ-COP binding, however, neither δ-COP nor 14-3-3 binding to RhoGAP6 impacted RhoA activity. Instead, analysis of protein transport through the secretory pathway demonstrated that RhoGAP6/δ-COP binding increased protein transport to the plasma membrane, as did a catalytically inactive mutant of RhoGAP6. Overall, we have identified a novel interaction between RhoGAP6 and δ-COP which is mediated by conserved C-terminal di-tryptophan motifs, and which might control protein transport in platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Shane P Comer
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Dishon W Hiebner
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- UCD School of Chemical & Bioprocess Engineering, Engineering & Materials Science Centre, University College Dublin, Belfield Dublin 4, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K
| | - Albert Smolenski
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield Dublin 4, Ireland
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| |
Collapse
|
10
|
Neagoe RAI, Gardiner EE, Stegner D, Nieswandt B, Watson SP, Poulter NS. Rac Inhibition Causes Impaired GPVI Signalling in Human Platelets through GPVI Shedding and Reduction in PLCγ2 Phosphorylation. Int J Mol Sci 2022; 23:3746. [PMID: 35409124 PMCID: PMC8998833 DOI: 10.3390/ijms23073746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 12/19/2022] Open
Abstract
Rac1 is a small Rho GTPase that is activated in platelets upon stimulation with various ligands, including collagen and thrombin, which are ligands for the glycoprotein VI (GPVI) receptor and the protease-activated receptors, respectively. Rac1-deficient murine platelets have impaired lamellipodia formation, aggregation, and reduced PLCγ2 activation, but not phosphorylation. The objective of our study is to investigate the role of Rac1 in GPVI-dependent human platelet activation and downstream signalling. Therefore, we used human platelets stimulated using GPVI agonists (collagen and collagen-related peptide) in the presence of the Rac1-specific inhibitor EHT1864 and analysed platelet activation, aggregation, spreading, protein phosphorylation, and GPVI clustering and shedding. We observed that in human platelets, the inhibition of Rac1 by EHT1864 had no significant effect on GPVI clustering on collagen fibres but decreased the ability of platelets to spread or aggregate in response to GPVI agonists. Additionally, in contrast to what was observed in murine Rac1-deficient platelets, EHT1864 enhanced GPVI shedding in platelets and reduced the phosphorylation levels of PLCγ2 following GPVI activation. In conclusion, Rac1 activity is required for both human and murine platelet activation in response to GPVI-ligands, but Rac1's mode of action differs between the two species.
Collapse
Affiliation(s)
- Raluca A. I. Neagoe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia;
| | - David Stegner
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Bernhard Nieswandt
- Rudolf Virchow Centre, Institute of Experimental Biomedicine I, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (D.S.); (B.N.)
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (R.A.I.N.); (S.P.W.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK
| |
Collapse
|