1
|
Pei Z, Xiong Y, Jiang S, Guo R, Jin W, Tao J, Zhang Z, Zhang Y, Zou Y, Gong Y, Ren J. Heavy Metal Scavenger Metallothionein Rescues Against Cold Stress-Evoked Myocardial Contractile Anomalies Through Regulation of Mitophagy. Cardiovasc Toxicol 2024; 24:85-101. [PMID: 38356081 DOI: 10.1007/s12012-023-09823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/24/2023] [Indexed: 02/16/2024]
Abstract
Cold stress prompts an increased prevalence of cardiovascular morbidity yet the underneath machinery remains unclear. Oxidative stress and autophagy appear to contribute to cold stress-induced cardiac anomalies. Our present study evaluated the effect of heavy metal antioxidant metallothionein on cold stress (4 °C)-induced in cardiac remodeling and contractile anomalies and cell signaling involved including regulation of autophagy and mitophagy. Cold stress (3 weeks) prompted interstitial fibrosis, mitochondrial damage (mitochondrial membrane potential and TEM ultrastructure), oxidative stress (glutathione, reactive oxygen species and superoxide), lipid peroxidation, protein injury, elevated left ventricular (LV) end systolic and diastolic diameters, decreased fractional shortening, ejection fraction, Langendorff heart function, cardiomyocyte shortening, maximal velocities of shortening/relengthening, and electrically stimulated intracellular Ca2+ rise along with elongated relaxation duration and intracellular Ca2+ clearance, the responses of which were overtly attenuated or mitigated by metallothionein. Levels of apoptosis, cell death (Bax and loss of Bcl2, IL-18), and autophagy (LC3BII-to-LC3BI ratio, Atg7 and Beclin-1) were overtly upregulated with comparable p62 under cold stress. Cold stress also evoked elevated mitophagy (decreased TOM20, increased Parkin and FUNDC1 with unaltered BNIP3). Cold stress overtly dampened phosphorylation of autophagy/mitophagy inhibitory molecules Akt and mTOR, stimulated and suppressed phosphorylation of ULK1 and eNOS, respectively, in the absence of altered pan protein levels. Cold stress-evoked responses in cell death, autophagy, mitophagy and their regulatory domains were overtly attenuated or ablated by metallothionein. Suppression of autophagy and mitophagy with 3-methyladenine, bafilomycin A1, cyclosporine A, and liensinine rescued hypothermia-instigated cardiomyocyte LC3B puncta formation and mechanical anomalies. Our findings support a protective nature for metallothionein in deep hypothermia-evoked cardiac abnormalities associated with regulation of autophagy and mitophagy.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China.
| | - Yayuan Xiong
- The First Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Shasha Jiang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China
| | - Wei Jin
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhenzhong Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yingmei Zhang
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Yan Gong
- The Second Department of Cardiology, Nanchang City Renmin Hospital, Nanchang, 3330009, China
| | - Jun Ren
- Shanghai Institute for Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Li JK, Song ZP, Hou XZ. Scutellarin ameliorates ischemia/reperfusion injury‑induced cardiomyocyte apoptosis and cardiac dysfunction via inhibition of the cGAS‑STING pathway. Exp Ther Med 2023; 25:155. [PMID: 36911381 PMCID: PMC9996299 DOI: 10.3892/etm.2023.11854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/16/2022] [Indexed: 02/19/2023] Open
Abstract
Ischemic heart disease is a common cardiovascular disease. Scutellarin (SCU) exhibits protective effects in ischemic cardiomyocytes; however, to the best of our knowledge, the protective mechanism of SCU remains unclear. The present study was performed to investigate the protective effect of SCU on cardiomyocytes after ischemia/reperfusion (I/R) injury and the underlying mechanism. Mice were intraperitoneally injected with SCU (20 mg/kg) for 7 days before establishing the heart I/R injury model. Cardiac function was detected using small animal echocardiography, apoptotic cells were visualized using TUNEL staining, the myocardial infarct area was assessed by 2,3,5-triphenyltetrazolium chloride staining, and the protein levels of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. In in vitro experiments, H9c2 cells were pretreated with SCU, RU.521 (cGAS inhibitor) and H-151 (STING inhibitor), before cell hypoxia/reoxygenation (H/R) injury. The viability of H9c2 cells was detected using a Cell Counting Kit-8 assay, the rate of apoptosis was determined by flow cytometry, and the protein expression levels of cGAS, STING, Bcl-2, Bax and cleaved Caspase-3 were detected by western blotting. It was revealed that SCU ameliorated cardiac dysfunction and apoptosis, and inhibited the activation of the cGAS-STING and Bcl-2/Bax/Caspase-3 signaling pathways in I/R-injured mice. It was also observed that SCU significantly increased cell viability and decreased apoptosis in H/R-induced H9c2 cells. Furthermore, H/R increased the expression levels of cGAS, STING and cleaved Caspase-3, and decreased the ratio of Bcl-2/Bax, which could be reversed by treatment with SCU, RU.521 and H-151. The present study demonstrated that the cGAS-STING signaling pathway may be involved in the regulation of the activation of the Bcl-2/Bax/Caspase-3 signaling pathway to mediate I/R-induced cardiomyocyte apoptosis and cardiac dysfunction, which could be ameliorated by SCU treatment.
Collapse
Affiliation(s)
- Jiu-Kang Li
- Department of Infectious Diseases, The People's Hospital of Yue Chi County, Guang'an, Sichuan 638300, P.R. China
| | - Zhi-Ping Song
- Department of Cardiovascular Medicine, The People's Hospital of Yue Chi County, Guang'an, Sichuan 638300, P.R. China
| | - Xing-Zhi Hou
- Department of Cardiovascular Medicine, The People's Hospital of Yue Chi County, Guang'an, Sichuan 638300, P.R. China
| |
Collapse
|