1
|
Liu Y, Li J, Wu Z, Wu S, Yang X. Fibroblast Growth Factor 21 Confers Protection Against Asthma Through Inhibition of NLRP3 Inflammasome Activation. Inflammation 2024:10.1007/s10753-024-02222-z. [PMID: 39730972 DOI: 10.1007/s10753-024-02222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model. Levels of FGF21 were observed to be elevated in mice exhibiting asthmatic symptoms. FGF21 knockout (KO) mice exhibited exacerbated asthmatic pathologies, marked by heightened infiltration of inflammatory cells and elevated release of inflammatory cytokine, compared to wild-type (WT) mice with OVA challenge. Adeno-associated virus (AAV)-mediated overexpression of FGF21 significantly reversed asthmatic pathologies in both WT and FGF21 KO mice. Activated NLRP3 inflammasome was observed in WT mice following OVA challenge, and this response was intensified in FGF21 KO mice, manifested by an upregulation of NLRP3, ASC, cleaved Caspase-1, cleaved Gasdermin D (GSDMD), IL-1β, and IL-18. Pharmacological suppression of NLRP3 ameliorated the aggravated asthmatic pathologies observed in FGF21 KO mice after OVA challenge. Overall, the present work underscores the pivotal function of FGF21 in the pathogenesis of asthma and suggests that FGF21 could serve as a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Jingxian Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Zhenyu Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Shiyu Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Xinwei Yang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
2
|
Hu X, Ding H, Wei Q, Chen R, Zhao W, Jiang L, Wang J, Liu H, Cao J, Liu H, Wang B. Fibroblast growth factor 21 predicts arteriovenous fistula functional patency loss and mortality in patients undergoing maintenance hemodialysis. Ren Fail 2024; 46:2302407. [PMID: 38197433 PMCID: PMC10783836 DOI: 10.1080/0886022x.2024.2302407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) dysfunction is a common complication in patients undergoing maintenance hemodialysis (MHD). Elevated serum levels of fibroblast growth factor 21 (FGF21) are associated with atherosclerosis and cardiovascular mortality. However, its association with vascular access outcomes remains elusive. The present study evaluated the relationship of serum FGF21 levels with AVF dysfunction and all-cause mortality in patients undergoing MHD. METHODS We included patients undergoing MHD using AVF from January 2018 to December 2019. FGF21 concentration was detected using enzyme-linked immunosorbent assay. Patients were followed up to record two clinical outcomes, AVF functional patency loss and all-cause mortality. The follow-up period ended on April 30, 2022. RESULTS Among 147 patients, the mean age was 58.49 ± 14.41 years, and the median serum level of FGF21 was 150.15 (70.57-318.01) pg/mL. During the median follow-up period of 40.83 months, the serum level of FGF21 was an independent risk factor for AVF functional patency loss (per 1 pg/mL increase, HR 1.002 [95% CI: 1.001-1.003, p = 0.003]). Patients with higher serum levels of FGF21 were more likely to suffer from all-cause mortality (per 1 pg/mL increase, HR 1.002 [95% CI: 1.000-1.003, p = 0.014]). The optimal cutoffs for FGF21 to predict AVF functional patency loss and all-cause mortality in patients undergoing MHD were 149.98 pg/mL and 146.43 pg/mL, with AUCs of 0.701 (95% CI: 0.606-0.796, p < 0.001) and 0.677 (95% CI: 0.595-0.752, p = 0.002), respectively. CONCLUSIONS Serum FGF21 levels were an independent risk factor and predictor for AVF functional patency loss and all-cause mortality in patients undergoing MHD.
Collapse
Affiliation(s)
- Xinhui Hu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Hong Ding
- Institute of Nephrology, People’s Hospital of Yangzhong city, Zhenjiang, Jiangsu Province, China
| | - Qing Wei
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Ruoxin Chen
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Weiting Zhao
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Liqiong Jiang
- Institute of Nephrology, the Affiliated Suzhou Hospital of the Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jing Wang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Haifei Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Jingyuan Cao
- Institute of Nephrology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Hong Liu
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Institute of Nephrology, Zhong da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
3
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
4
|
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:159-172. [PMID: 39020530 PMCID: PMC11384831 DOI: 10.47162/rjme.65.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity poses a significant and escalating challenge in contemporary society, increasing the risk of developing various metabolic disorders such as dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and certain types of cancer. The current array of therapeutic interventions for obesity remains insufficient, prompting a pressing demand for novel and more effective treatments. In response, scientific attention has turned to the fibroblast growth factor 21 (FGF21) due to its remarkable and diverse impacts on lipid, carbohydrate, and energy metabolism. This comprehensive review aims to delve into the multifaceted aspects of FGF21, encompassing its discovery, synthesis, functional roles, and potential as a biomarker and therapeutic agent, with a specific focus on its implications for NAFLD.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Romania; ; Department of Health Care and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University Center of Piteşti, National University for Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
5
|
Jackson TC, Herrmann JR, Fink EL, Au AK, Kochanek PM. Harnessing the Promise of the Cold Stress Response for Acute Brain Injury and Critical Illness in Infants and Children. Pediatr Crit Care Med 2024; 25:259-270. [PMID: 38085024 PMCID: PMC10932834 DOI: 10.1097/pcc.0000000000003424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Travis C. Jackson
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jeremy R. Herrmann
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Ding P, Yang R, Li C, Fu HL, Ren GL, Wang P, Zheng DY, Chen W, Yang LY, Mao YF, Yuan HB, Li YH. Fibroblast growth factor 21 attenuates ventilator-induced lung injury by inhibiting the NLRP3/caspase-1/GSDMD pyroptotic pathway. Crit Care 2023; 27:196. [PMID: 37218012 DOI: 10.1186/s13054-023-04488-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is caused by overdistension of the alveoli by the repetitive recruitment and derecruitment of alveolar units. This study aims to investigate the potential role and mechanism of fibroblast growth factor 21 (FGF21), a metabolic regulator secreted by the liver, in VILI development. METHODS Serum FGF21 concentrations were determined in patients undergoing mechanical ventilation during general anesthesia and in a mouse VILI model. Lung injury was compared between FGF21-knockout (KO) mice and wild-type (WT) mice. Recombinant FGF21 was administrated in vivo and in vitro to determine its therapeutic effect. RESULTS Serum FGF21 levels in patients and mice with VILI were significantly higher than in those without VILI. Additionally, the increment of serum FGF21 in anesthesia patients was positively correlated with the duration of ventilation. VILI was aggravated in FGF21-KO mice compared with WT mice. Conversely, the administration of FGF21 alleviated VILI in both mouse and cell models. FGF21 reduced Caspase-1 activity, suppressed the mRNA levels of Nlrp3, Asc, Il-1β, Il-18, Hmgb1 and Nf-κb, and decreased the protein levels of NLRP3, ASC, IL-1β, IL-18, HMGB1 and the cleaved form of GSDMD. CONCLUSIONS Our findings reveal that endogenous FGF21 signaling is triggered in response to VILI, which protects against VILI by inhibiting the NLRP3/Caspase-1/GSDMD pyroptosis pathway. These results suggest that boosting endogenous FGF21 or the administration of recombinant FGF21 could be promising therapeutic strategies for the treatment of VILI during anesthesia or critical care.
Collapse
Affiliation(s)
- Peng Ding
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Anesthesiology, PLA No.983 Hospital, Tianjin, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hai-Long Fu
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guang-Li Ren
- Department of Anesthesiology, PLA No.983 Hospital, Tianjin, China
| | - Pei Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Dong-Yu Zheng
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wei Chen
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li-Ye Yang
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hong-Bin Yuan
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
7
|
Wang Y, Wei Z, Fan J, Song X, Xing S. Hyper-expression of GFP-fused active hFGF21 in tobacco chloroplasts. Protein Expr Purif 2023; 208-209:106271. [PMID: 37084839 DOI: 10.1016/j.pep.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Human fibroblast growth factor 21 (hFGF21) is a promising candidate for metabolic diseases. In this study, a tobacco chloroplast transformation vector, pWYP21406, was constructed that consisted of codon-optimized encoding gene hFGF21 fused with GFP at its 5' terminal; it was driven by the promoter of plastid rRNA operon (Prrn) and terminated by the terminator of plastid rps16 gene (Trps16). Spectinomycin-resistant gene (aadA) was the marker and placed in the same cistron between hFGF21 and the terminator Trps16. Transplastomic plants were generated by the biolistic bombardment method and proven to be homoplastic by Southern blotting analysis. The expression of GFP was detected under ultraviolet light and a laser confocal microscope. The expression of GFP-hFGF21 was confirmed by immunoblotting and quantified by enzyme-linked immunosorbnent assay (ELISA). The accumulation of GFP-hFGF21 was confirmed to be 12.44 ± 0.45% of the total soluble protein (i.e., 1.9232 ± 0.0673 g kg-1 of fresh weight). GFP-hFGF21 promoted the proliferation of hepatoma cell line HepG2, inducing the expression of glucose transporter 1 in hepatoma HepG2 cells and improving glucose uptake. These results suggested that a chloroplast expression is a promising approach for the production of bioactive recombinant hFGF21.
Collapse
Affiliation(s)
- Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Zhengyi Wei
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China; Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jieying Fan
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Shaochen Xing
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|