1
|
Jung Y, Park SH. Age-related brain-region-specific changes in diffusion anisotropy in subarachnoid space of young adults. Neuroscience 2024; 560:36-42. [PMID: 39284434 DOI: 10.1016/j.neuroscience.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 10/28/2024]
Abstract
The glymphatic system theory postulates that brain waste is removed through the cerebrospinal fluid (CSF) flow. According to this theory, CSF in the subarachnoid space (SAS) moves to the perivascular space around the penetrating arteries, flows into parenchyma to mix with interstitial fluid and brain waste, and then moves to the perivenous space to be flushed out of the brain. Despite the controversies about the glymphatic theory, it is clear that SAS plays a key role in waste clearance. For instance, the SAS around the middle cerebral artery is known to be highly involved in glymphatic influx. While diffusion tensor imaging has been used for studying the glymphatic system, there has been limited exploration of age-related changes in diffusion anisotropy within SAS and their regional variations. Given the narrow and heterogeneous morphology of SAS, the fractional anisotropy (FA) in diverse brain regions may be more relevant to glymphatic transport than mean diffusivity (MD). The goal of this study was to investigate FA in SAS to observe age-related changes across different brain regions and to interpret the results based on the glymphatic transport. We segmented SAS in the whole brain of 83 young adults and divided SAS into four cortical lobes. We demonstrated regional variations in FA and MD within SAS and an age-related decline in FA among young adults, indicating that diffusion within SAS becomes more isotropic with aging. These findings raise new questions about the factors influencing diffusion anisotropy within SAS, which are relevant to glymphatic transport.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Potvin-Jutras Z, Intzandt B, Mohammadi H, Liu P, Chen JJ, Gauthier CJ. Sex-specific effects of intensity and dose of physical activity on BOLD-fMRI cerebrovascular reactivity and cerebral pulsatility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617666. [PMID: 39416007 PMCID: PMC11482942 DOI: 10.1101/2024.10.10.617666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebrovascular reactivity (CVR) and cerebral pulsatility (CP) are important indicators of cerebrovascular health and have been shown to be associated with physical activity (PA). Sex differences have been shown to influence the impact of PA on cerebrovascular health. However, the sex-specific effects of PA on CP and CVR, particularly in relation to intensity and dosage of PA, remains unknown. Thus, this cross-sectional study aimed to evaluate the sex-specific effects of different intensities and doses of PA on CVR and CP. The Human Connectome - Aging dataset was used, including 626 participants (350 females, 276 males) aged 36-85 (mean age: 58.8 ± 14.1 years). Females were stratified into premenopausal and postmenopausal groups to assess the potential influence of menopausal status. Novel tools based solely on resting state fMRI data were used to estimate both CVR and CP. The International Physical Activity Questionnaire was used to quantify weekly self-reported PA as metabolic equivalent of task. Results indicated that both sexes and menopausal subgroups revealed negative linear relationships between relative CVR and PA. Furthermore, females presented a unique non-linear relationship between relative CVR and total PA in the cerebral cortex. In females, there were also relationships with total and walking PA in occipital and cingulate regions. In males, we observed relationships between total or vigorous PA and CVR in parietal and cingulate regions. Sex-specific effects were also observed with CP, whereby females benefited across a greater number of regions and intensities than males, especially in the postmenopause group. Overall, males and females appear to benefit from different amounts and intensities of PA, with menopause status significantly influencing the effect of PA on cerebrovascular outcomes, underscoring the need for sex-specific recommendations in promoting cerebrovascular health.
Collapse
Affiliation(s)
- Zacharie Potvin-Jutras
- Department of Physics, Concordia University, Canada
- School of Health, Concordia University, Canada
- Centre ÉPIC, Montreal Heart Institute, Montréal, Québec, Canada
| | - Brittany Intzandt
- BrainLab, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Hanieh Mohammadi
- Centre ÉPIC, Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jean J Chen
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Canada
- School of Health, Concordia University, Canada
- Centre ÉPIC, Montreal Heart Institute, Montréal, Québec, Canada
| |
Collapse
|
3
|
Rivera-Rivera LA, Roberts GS, Peret A, Langhough RE, Jonaitis EM, Du L, Field A, Eisenmenger L, Johnson SC, Johnson KM. Unraveling diurnal and technical variability in cerebral hemodynamics from neurovascular 4D-Flow MRI. J Cereb Blood Flow Metab 2024; 44:1362-1375. [PMID: 38340787 PMCID: PMC11342721 DOI: 10.1177/0271678x241232190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/12/2024]
Abstract
Neurovascular 4D-Flow MRI enables non-invasive evaluation of cerebral hemodynamics including measures of cerebral blood flow (CBF), vessel pulsatility index (PI), and cerebral pulse wave velocity (PWV). 4D-Flow measures have been linked to various neurovascular disorders including small vessel disease and Alzheimer's disease; however, physiological and technical sources of variability are not well established. Here, we characterized sources of diurnal physiological and technical variability in cerebral hemodynamics using 4D-Flow in a retrospective study of cognitively unimpaired older adults (N = 750) and a prospective study of younger adults (N = 10). Younger participants underwent repeated MRI sessions at 7am, 4 pm, and 10 pm. In the older cohort, having an MRI earlier on the day was significantly associated with higher CBF and lower PI. In prospective experiments, time of day significantly explained variability in CBF and PI; however, not in PWV. Test-retest experiments showed high CBF intra-session repeatability (repeatability coefficient (RPC) =7.2%), compared to lower diurnal repeatability (RPC = 40%). PI and PWV displayed similar intra-session and diurnal variability (PI intra-session RPC = 22%, RPC = 24% 7am vs 4 pm; PWV intra-session RPC = 17%, RPC = 21% 7am vs 4 pm). Overall, CBF measures showed low technical variability, supporting diurnal variability is from physiology. PI and PWV showed higher technical variability but less diurnal variability.
Collapse
Affiliation(s)
- Leonardo A Rivera-Rivera
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony Peret
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca E Langhough
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lianlian Du
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aaron Field
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Eisenmenger
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kevin M Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
4
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Reed KS, Frescoln AM, Keleher Q, Brellenthin AG, Kohut ML, Lefferts WK. Effects of aerobic exercise training on cerebral pulsatile hemodynamics in middle-aged adults with elevated blood pressure/stage 1 hypertension. J Appl Physiol (1985) 2024; 136:1376-1387. [PMID: 38601998 PMCID: PMC11368515 DOI: 10.1152/japplphysiol.00689.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Mechanisms behind the protective effects of aerobic exercise on brain health remain elusive but may be vascular in origin and relate to cerebral pulsatility. This pilot study investigated the effects of 12-wk aerobic exercise training on cerebral pulsatility and its vascular contributors (large artery stiffness, characteristic impedance) in at-risk middle-aged adults. Twenty-eight inactive middle-aged adults with elevated blood pressure or stage 1 hypertension were assigned to either moderate/vigorous aerobic exercise training (AET) for 3 days/wk or no-exercise control (CON) group. Middle cerebral artery (MCA) pulsatility index (PI), large artery (i.e., aorta, carotid) stiffness, and characteristic impedance were assessed via Doppler and tonometry at baseline, 6, and 12 wk, whereas cardiorespiratory fitness (V̇o2peak) was assessed via incremental exercise test and cognitive function via computerized battery at baseline and 12 wk. V̇o2peak increased 6% in AET and decreased 4% in CON (P < 0.05). Proximal aortic compliance increased (P = 0.04, partial η2 = 0.14) and aortic characteristic impedance decreased (P = 0.02, partial η2 = 0.17) with AET but not CON. Cerebral pulsatility showed a medium-to-large effect size increase with AET, although not statistically significant (P = 0.07, partial η2 = 0.11) compared with CON. Working memory reaction time improved with AET but not CON (P = 0.02, partial η2 = 0.20). Our data suggest 12-wk AET elicited improvements in central vascular hemodynamics (e.g., proximal aortic compliance and characteristic impedance) along with apparent, paradoxical increases in cerebral pulsatile hemodynamics.NEW & NOTEWORTHY We identify differential central versus cerebrovascular responses to 12 wk of aerobic exercise training in middle-aged adults. Although proximal aortic compliance and characteristic impedance improved after 12 wk of exercise, cerebral pulsatility tended to unexpectedly increase. These data suggest short-term aerobic exercise training may lead to more immediate benefits in the central vasculature, whereas longer duration exercise training may be required for beneficial changes in pulsatility within the cerebrovasculature.
Collapse
Affiliation(s)
- Krista S Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Abby M Frescoln
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Quinn Keleher
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | | | - Marian L Kohut
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Wesley K Lefferts
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
6
|
Voss HU, Razlighi QR. Pulsatility analysis of the circle of Willis. AGING BRAIN 2024; 5:100111. [PMID: 38495808 PMCID: PMC10940807 DOI: 10.1016/j.nbas.2024.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose To evaluate the phenomenological significance of cerebral blood pulsatility imaging in aging research. Methods N = 38 subjects from 20 to 72 years of age (24 females) were imaged with ultrafast MRI with a sampling rate of 100 ms and simultaneous acquisition of pulse oximetry data. Of these, 28 subjects had acceptable MRI and pulse data, with 16 subjects between 20 and 28 years of age, and 12 subjects between 61 and 72 years of age. Pulse amplitude in the circle of Willis was assessed with the recently developed method of analytic phase projection to extract blood volume waveforms. Results Arteries in the circle of Willis showed pulsatility in the MRI for both the young and old age groups. Pulse amplitude in the circle of Willis significantly increased with age (p = 0.01) but was independent of gender, heart rate, and head motion during MRI. Discussion and conclusion Increased pulse wave amplitude in the circle of Willis in the elderly suggests a phenomenological significance of cerebral blood pulsatility imaging in aging research. The physiologic origin of increased pulse amplitude (increased pulse pressure vs. change in arterial morphology vs. re-shaping of pulse waveforms caused by the heart, and possible interaction with cerebrospinal fluid pulsatility) requires further investigation.
Collapse
Affiliation(s)
- Henning U. Voss
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Cornell MRI Facility, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Qolamreza R. Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Allison EY, Al-Khazraji BK. Cerebrovascular adaptations to habitual resistance exercise with aging. Am J Physiol Heart Circ Physiol 2024; 326:H772-H785. [PMID: 38214906 PMCID: PMC11221804 DOI: 10.1152/ajpheart.00625.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
Resistance training (RT) is associated with improved metabolism, bone density, muscular strength, and lower risk of osteoporosis, sarcopenia, and cardiovascular disease. Although RT imparts many physiological benefits, cerebrovascular adaptations to chronic RT are not well defined. Participation in RT is associated with greater resting peripheral arterial diameters, improved endothelial function, and general cardiovascular health, whereas simultaneously linked to reductions in central arterial compliance. Rapid blood pressure fluctuations during resistance exercise, combined with reduced arterial compliance, could lead to cerebral microvasculature damage and subsequent cerebral hypoperfusion. Reductions in cerebral blood flow (CBF) accompany normal aging, where chronic reductions in CBF are associated with changes in brain structure and function, and increased risk of neurodegeneration. It remains unclear whether reductions in arterial compliance with RT relate to subclinical cerebrovascular pathology, or if such adaptations require interpretation in the context of RT specifically. The purpose of this narrative review is to synthesize literature pertaining to cerebrovascular adaptations to RT at different stages of the life span. This review also aims to identify gaps in the current understanding of the long-term impacts of RT on cerebral hemodynamics and provide a mechanistic rationale for these adaptations as they relate to aging, cerebral vasculature, and overall brain health.
Collapse
Affiliation(s)
- Elric Y Allison
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Baraa K Al-Khazraji
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Reeve EH, Barnes JN, Moir ME, Walker AE. Impact of arterial stiffness on cerebrovascular function: a review of evidence from humans and preclincal models. Am J Physiol Heart Circ Physiol 2024; 326:H689-H704. [PMID: 38214904 PMCID: PMC11221809 DOI: 10.1152/ajpheart.00592.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
With advancing age, the cerebral vasculature becomes dysfunctional, and this dysfunction is associated with cognitive decline. However, the initiating cause of these age-related cerebrovascular impairments remains incompletely understood. A characteristic feature of the aging vasculature is the increase in stiffness of the large elastic arteries. This increase in arterial stiffness is associated with elevated pulse pressure and blood flow pulsatility in the cerebral vasculature. Evidence from both humans and rodents supports that increases in large elastic artery stiffness are associated with cerebrovascular impairments. These impacts on cerebrovascular function are wide-ranging and include reductions in global and regional cerebral blood flow, cerebral small vessel disease, endothelial cell dysfunction, and impaired perivascular clearance. Furthermore, recent findings suggest that the relationship between arterial stiffness and cerebrovascular function may be influenced by genetics, specifically APOE and NOTCH genotypes. Given the strength of the evidence that age-related increases in arterial stiffness have deleterious impacts on the brain, interventions that target arterial stiffness are needed. The purpose of this review is to summarize the evidence from human and rodent studies, supporting the role of increased arterial stiffness in age-related cerebrovascular impairments.
Collapse
Affiliation(s)
- Emily H Reeve
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jill N Barnes
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - M Erin Moir
- Department of Kinesiology University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
9
|
Xie L, Zhang Y, Hong H, Xu S, Cui L, Wang S, Li J, Liu L, Lin M, Luo X, Li K, Zeng Q, Zhang M, Zhang R, Huang P. Higher intracranial arterial pulsatility is associated with presumed imaging markers of the glymphatic system: An explorative study. Neuroimage 2024; 288:120524. [PMID: 38278428 DOI: 10.1016/j.neuroimage.2024.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Arterial pulsation has been suggested as a key driver of paravascular cerebrospinal fluid flow, which is the foundation of glymphatic clearance. However, whether intracranial arterial pulsatility is associated with glymphatic markers in humans has not yet been studied. METHODS Seventy-three community participants were enrolled in the study. 4D phase-contrast magnetic resonance imaging (MRI) was used to quantify the hemodynamic parameters including flow pulsatility index (PIflow) and area pulsatility index (PIarea) from 13 major intracerebral arterial segments. Three presumed neuroimaging markers of the glymphatic system were measured: including dilation of perivascular space (PVS), diffusivity along the perivascular space (ALPS), and volume fraction of free water (FW) in white matter. We explored the relationships between PIarea, PIflow, and the presumed glymphatic markers, controlling for related covariates. RESULTS PIflow in the internal carotid artery (ICA) C2 segment (OR, 1.05; 95 % CI, 1.01-1.10, per 0.01 increase in PI) and C4 segment (OR, 1.05; 95 % CI, 1.01-1.09) was positively associated with the dilation of basal ganglia PVS, and PIflow in the ICA C4 segment (OR, 1.06, 95 % CI, 1.02-1.10) was correlated with the dilation of PVS in the white matter. ALPS was associated with PIflow in the basilar artery (β, -0.273, p, 0.046) and PIarea in the ICA C2 (β, -0.239, p, 0.041) and C7 segments (β, -0.238, p, 0.037). CONCLUSIONS Intracranial arterial pulsatility was associated with presumed neuroimaging markers of the glymphatic system, but the results were not consistent across different markers. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Linyun Xie
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Yao Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Hui Hong
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shan Xu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lei Cui
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shuyue Wang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Jixuan Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Lingyun Liu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Miao Lin
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xiao Luo
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Kaicheng Li
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Qingze Zeng
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Ruiting Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, China.
| |
Collapse
|
10
|
Sanjana F, Delgorio PL, DeConne TM, Hiscox LV, Pohlig RT, Johnson CL, Martens CR. Vascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespan. J Cereb Blood Flow Metab 2023; 43:1931-1941. [PMID: 37395479 PMCID: PMC10676145 DOI: 10.1177/0271678x231186571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Arterial stiffness and cerebrovascular pulsatility are non-traditional risk factors of Alzheimer's disease. However, there is a gap in understanding the earliest mechanisms that link these vascular determinants to brain aging. Changes to mechanical tissue properties of the hippocampus (HC), a brain structure essential for memory encoding, may reflect the impact of vascular dysfunction on brain aging. We tested the hypothesis that arterial stiffness and cerebrovascular pulsatility are related to HC tissue properties in healthy adults across the lifespan. Twenty-five adults underwent measurements of brachial blood pressure (BP), large elastic artery stiffness, middle cerebral artery pulsatility index (MCAv PI), and magnetic resonance elastography (MRE), a sensitive measure of HC viscoelasticity. Individuals with higher carotid pulse pressure (PP) exhibited lower HC stiffness (β = -0.39, r = -0.41, p = 0.05), independent of age and sex. Collectively, carotid PP and MCAv PI significantly explained a large portion of the total variance in HC stiffness (adjusted R2 = 0.41, p = 0.005) in the absence of associations with HC volumes. These cross-sectional findings suggest that the earliest reductions in HC tissue properties are associated with alterations in vascular function.
Collapse
Affiliation(s)
- Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Theodore M DeConne
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Lucy V Hiscox
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Ryan T Pohlig
- Department of Epidemiology, University of Delaware, Newark, DE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
11
|
Fico BG, Miller KB, Rivera-Rivera LA, Corkery AT, Pearson AG, Loggie NA, Howery AJ, Rowley HA, Johnson KM, Johnson SC, Wieben O, Barnes JN. Cerebral hemodynamics comparison using transcranial doppler ultrasound and 4D flow MRI. Front Physiol 2023; 14:1198615. [PMID: 37304825 PMCID: PMC10250020 DOI: 10.3389/fphys.2023.1198615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Age-related changes in cerebral hemodynamics are controversial and discrepancies may be due to experimental techniques. As such, the purpose of this study was to compare cerebral hemodynamics measurements of the middle cerebral artery (MCA) between transcranial Doppler ultrasound (TCD) and four-dimensional flow MRI (4D flow MRI). Methods: Twenty young (25 ± 3 years) and 19 older (62 ± 6 years) participants underwent two randomized study visits to evaluate hemodynamics at baseline (normocapnia) and in response to stepped hypercapnia (4% CO2, and 6% CO2) using TCD and 4D flow MRI. Cerebral hemodynamic measures included MCA velocity, MCA flow, cerebral pulsatility index (PI) and cerebrovascular reactivity to hypercapnia. MCA flow was only assessed using 4D flow MRI. Results: MCA velocity between the TCD and 4D flow MRI methods was positively correlated across the normocapnia and hypercapnia conditions (r = 0.262; p = 0.004). Additionally, cerebral PI was significantly correlated between TCD and 4D flow MRI across the conditions (r = 0.236; p = 0.010). However, there was no significant association between MCA velocity using TCD and MCA flow using 4D flow MRI across the conditions (r = 0.079; p = 0.397). When age-associated differences in cerebrovascular reactivity using conductance were compared using both methodologies, cerebrovascular reactivity was greater in young adults compared to older adults when using 4D flow MRI (2.11 ± 1.68 mL/min/mmHg/mmHg vs. 0.78 ± 1.68 mL/min/mmHg/mmHg; p = 0.019), but not with TCD (0.88 ± 1.01 cm/s/mmHg/mmHg vs. 0.68 ± 0.94 cm/s/mmHg/mmHg; p = 0.513). Conclusion: Our results demonstrated good agreement between the methods at measuring MCA velocity during normocapnia and in response to hypercapnia, but MCA velocity and MCA flow were not related. In addition, measurements using 4D flow MRI revealed effects of aging on cerebral hemodynamics that were not apparent using TCD.
Collapse
Affiliation(s)
- Brandon G. Fico
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Kathleen B. Miller
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam T. Corkery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew G. Pearson
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicole A. Loggie
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J. Howery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Howard A. Rowley
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin M. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jill N. Barnes
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Han G, Zhou Y, Zhang K, Jiao B, Hu J, Zhang Y, Wang Z, Lou M, Bai R. Age- and time-of-day dependence of glymphatic function in the human brain measured via two diffusion MRI methods. Front Aging Neurosci 2023; 15:1173221. [PMID: 37284019 PMCID: PMC10239807 DOI: 10.3389/fnagi.2023.1173221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Advanced age, accompanied by impaired glymphatic function, is a key risk factor for many neurodegenerative diseases. To study age-related differences in the human glymphatic system, we measured the influx and efflux activities of the glymphatic system via two non-invasive diffusion magnetic resonance imaging (MRI) methods, ultra-long echo time and low-b diffusion tensor imaging (DTIlow-b) measuring the subarachnoid space (SAS) flow along the middle cerebral artery and DTI analysis along the perivascular space (DTI-ALPS) along medullary veins in 22 healthy volunteers (aged 21-75 years). We first evaluated the circadian rhythm dependence of the glymphatic activity by repeating the MRI measurements at five time points from 8:00 to 23:00 and found no time-of-day dependence in the awake state under the current sensitivity of MRI measurements. Further test-retest analysis demonstrated high repeatability of both diffusion MRI measurements, suggesting their reliability. Additionally, the influx rate of the glymphatic system was significantly higher in participants aged >45 years than in participants aged 21-38, while the efflux rate was significantly lower in those aged >45 years. The mismatched influx and efflux activities in the glymphatic system might be due to age-related changes in arterial pulsation and aquaporin-4 polarization.
Collapse
Affiliation(s)
- Guangxu Han
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Kemeng Zhang
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bingjie Jiao
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Yifan Zhang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zejun Wang
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Shaw Hospital AND Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Cilhoroz BT, Heckel AR, DeBlois JP, Keller A, Sosnoff JJ, Heffernan KS. Arterial stiffness and augmentation index are associated with balance function in young adults. Eur J Appl Physiol 2023; 123:891-899. [PMID: 36564497 DOI: 10.1007/s00421-022-05116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Arterial stiffness and pulsatile central hemodynamics have been shown to affect various aspects of physical function, such as exercise capacity, gait speed, and motor control. The aim of this study was to examine the potential association between arterial stiffness and balance function in healthy younger men and women. METHODS 112 participants (age = 21 ± 4 years, n = 78 women) underwent measures of arterial stiffness, pulsatile central hemodynamics, balance function and physical fitness in this cross-sectional study. Postural sway was measured in triplicate while participants stood on a foam surface with their eyes closed for 20 s. The average total center of pressure path length from the three trials was used for analysis. Measures of vascular function were estimated using an oscillometric blood pressure device while at rest and included pulse wave velocity (PWV), augmentation index (AIx), and pulse pressure amplification. Measures of physical fitness used as covariates in statistical models included handgrip strength determined from a handgrip dynamometer, lower-body flexibility assessed using a sit-and-reach test, estimated maximal aerobic capacity (VO2max) using heart rate and a step test, and body fat percentage measured from air displacement plethysmography. RESULTS The results from linear regression indicated that after considering sex, mean arterial pressure, body fat, estimated VO2max, handgrip strength, and sit-and-reach, PWV (β = 0.44, p < 0.05) and AIx (β = - 0.25, p < 0.01) were significant predictors of postural sway, explaining 10.2% of the variance. CONCLUSION Vascular function is associated with balance function in young adults independent of physical fitness. Increased arterial stiffness may negatively influence balance, while wave reflections may be protective for balance.
Collapse
Affiliation(s)
- Burak T Cilhoroz
- Department of Exercise Science, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, 13244, USA
| | - Andrew R Heckel
- Department of Exercise Science, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, 13244, USA
| | - Jacob P DeBlois
- Department of Exercise Science, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, 13244, USA
| | - Allison Keller
- Department of Exercise Science, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, 13244, USA
| | - Jacob J Sosnoff
- Department of Physical Therapy, Rehabilitation Science and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kevin S Heffernan
- Department of Exercise Science, Falk College of Sport and Human Dynamics, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
14
|
Aortic Stiffness: A Major Risk Factor for Multimorbidity in the Elderly. J Clin Med 2023; 12:jcm12062321. [PMID: 36983321 PMCID: PMC10058400 DOI: 10.3390/jcm12062321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Multimorbidity, the coexistence of multiple health conditions in an individual, has emerged as one of the greatest challenges facing health services, and this crisis is partly driven by the aging population. Aging is associated with increased aortic stiffness (AoStiff), which in turn is linked with several morbidities frequently affecting and having disastrous consequences for the elderly. These include hypertension, ischemic heart disease, heart failure, atrial fibrillation, chronic kidney disease, anemia, ischemic stroke, and dementia. Two or more of these disorders (multimorbidity) often coexist in the same elderly patient and the specific multimorbidity pattern depends on several factors including sex, ethnicity, common morbidity routes, morbidity interactions, and genomics. Regular exercise, salt restriction, statins in patients at high atherosclerotic risk, and stringent blood pressure control are interventions that delay progression of AoStiff and most likely decrease multimorbidity in the elderly.
Collapse
|
15
|
Paré M, Obeid H, Labrecque L, Drapeau A, Brassard P, Agharazii M. Cerebral blood flow pulsatility and cerebral artery stiffness acutely decrease during hemodialysis. Physiol Rep 2023; 11:e15595. [PMID: 36808481 PMCID: PMC9937783 DOI: 10.14814/phy2.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
End-stage kidney disease (ESKD) is associated with increased arterial stiffness and cognitive impairment. Cognitive decline is accelerated in ESKD patients on hemodialysis and may result from repeatedly inappropriate cerebral blood flow (CBF). The aim of this study was to examine the acute effect of hemodialysis on pulsatile components of CBF and their relation to acute changes in arterial stiffness. In eight participants (age: 63 ± 18 years, men: 5), CBF was estimated using middle cerebral artery blood velocity (MCAv) assessed with transcranial Doppler ultrasound before, during, and after a single hemodialysis session. Brachial and central blood pressure, along with estimated aortic stiffness (eAoPWV) were measured using an oscillometric device. Arterial stiffness from heart to MCA was measured as the pulse arrival time (PAT) between electrocardiogram (ECG) and transcranial Doppler ultrasound waveforms (cerebral PAT). During hemodialysis, there was a significant reduction in mean MCAv (-3.2 cm/s, p < 0.001), and systolic MCAv (-13.0 cm/s, p < 0.001). While baseline eAoPWV (9.25 ± 0.80 m/s) did not significantly change during hemodialysis, cerebral PAT increased significantly (+0.027 , p < 0.001) and was associated with reduced pulsatile components of MCAv. This study shows that hemodialysis acutely reduces stiffness of arteries perfusing the brain along with pulsatile components of blood velocity.
Collapse
Affiliation(s)
- Mathilde Paré
- CHU de Québec Research Center, L'Hôtel‐Dieu de Québec HospitalQuébec CityQuebecCanada
- Research Center of the Institute Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuebecCanada
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuebecCanada
| | - Hasan Obeid
- CHU de Québec Research Center, L'Hôtel‐Dieu de Québec HospitalQuébec CityQuebecCanada
| | - Lawrence Labrecque
- Research Center of the Institute Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuebecCanada
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuebecCanada
| | - Audrey Drapeau
- Research Center of the Institute Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuebecCanada
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuebecCanada
| | - Patrice Brassard
- Research Center of the Institute Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuebecCanada
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuebecCanada
| | - Mohsen Agharazii
- CHU de Québec Research Center, L'Hôtel‐Dieu de Québec HospitalQuébec CityQuebecCanada
- Division of Nephrology, Faculty of MedicineUniversité Laval, QuébecQuébec CityQuebecCanada
| |
Collapse
|
16
|
Zeller NP, Miller KB, Zea RD, Howery AJ, Labrecque L, Aaron SE, Brassard P, Billinger SA, Barnes JN. Sex-specific effects of cardiorespiratory fitness on age-related differences in cerebral hemodynamics. J Appl Physiol (1985) 2022; 132:1310-1317. [PMID: 35446599 PMCID: PMC9126221 DOI: 10.1152/japplphysiol.00782.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
There is a positive association between cardiorespiratory fitness and cognitive health, but the interaction between cardiorespiratory fitness and aging on cerebral hemodynamics is unclear. These potential interactions are further influenced by sex differences. The purpose of this study was to determine the sex-specific relationships between cardiorespiratory fitness, age, and cerebral hemodynamics in humans. Measurements of unilateral middle cerebral artery blood velocity (MCAv) and cerebral pulsatility index obtained using transcranial Doppler ultrasound and cardiorespiratory fitness [maximal oxygen consumption (V̇o2max)] obtained from maximal incremental exercise tests were retrieved from study records at three institutions. A total of 153 healthy participants were included in the analysis (age = 42 ± 20 yr, range = 18-83 yr). There was no association between V̇o2max and MCAv in all participants (P = 0.20). The association between V̇o2max and MCAv was positive in women, but no longer significant after age adjustment (univariate: P = 0.01; age-adjusted: P = 0.45). In addition, there was no association between V̇o2max and MCAv in men (univariate: P = 0.25, age-adjusted: P = 0.57). For V̇o2max and cerebral pulsatility index, there were significant negative associations in all participants (P < 0.001), in men (P < 0.001) and women (P < 0.001). This association remained significant when adjusting for age in women only (P = 0.03). In summary, higher cardiorespiratory fitness was associated with a lower cerebral pulsatility index in all participants, and the significance remained only in women when adjusting for age. Future studies are needed to determine the sex-specific impact of cardiorespiratory fitness improvements on cerebrovascular health.NEW & NOTEWORTHY We present data pooled from three institutions to study the impact of age, sex, and cardiorespiratory fitness on cerebral hemodynamics. Cardiorespiratory fitness was positively associated with middle cerebral artery blood velocity in women, but not in men. Furthermore, cardiorespiratory fitness was inversely associated with cerebral pulsatility index in both men and women, which remained significant in women when adjusting for age. These data suggest a sex-specific impact of cardiorespiratory fitness on resting cerebral hemodynamics.
Collapse
Affiliation(s)
- Niklaus P Zeller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kathleen B Miller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan D Zea
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anna J Howery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- Research Center of the Institut, Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec City, Québec, Canada
| | - Stacey E Aaron
- Department of Physical Therapy, Rehabilitation Science and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- Research Center of the Institut, Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec City, Québec, Canada
| | - Sandra A Billinger
- Department of Physical Therapy, Rehabilitation Science and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas
| | - Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|