1
|
Zeng ZL, Zhao ZB, Yuan Q, Yang SQ, Wang ZX, Wang Z, Zeng SY, Li AQ, Chen Q, Zhu GQ, Xiao XH, Luo GH, Luo HY, Li JY, Zu XY, Xie H, Liu JH. Hepatic Steatosis Aggravates Vascular Calcification via Extracellular Vesicle-Mediated Osteochondrogenic Switch of Vascular Smooth Muscle Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408660. [PMID: 39680681 DOI: 10.1002/advs.202408660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Indexed: 12/18/2024]
Abstract
The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) has risen sharply. This condition is strongly associated with the risk of cardiovascular disease (CVD), but how MAFLD affects the development and progression of CVD, particularly concerning vascular calcification, remains unclear. Herein, extracellular vesicles (EVs) are identified from steatotic hepatocytes as a trigger that accelerated the progression of both vascular intimal and medial calcification. Steatotic hepatocytes are found to release more EVs, which are able to reach the vascular tissue, be taken up by vascular smooth muscle cells (VSMCs), and promote their osteogenic differentiation. Within these toxic vesicles, a protein cargo is identified called lectin galactoside-binding soluble 3 binding protein (Lgals3bp) that acted as a potent inducer of osteochondrogenic transformation in VSMCs. Both the inhibition of EV release and the liver-specific knockdown of Lgals3bp profoundly attenuated vascular calcification. This work partially explains the reason for the high incidence of vascular calcification in MAFLD and unveils a novel mechanism that may be used to prevent or treat cardiovascular complications in patients with MAFLD.
Collapse
Affiliation(s)
- Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Zhi-Bo Zhao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Shi-Qi Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Angmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - An-Qi Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Qian Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Angmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Guang-Hua Luo
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Hai-Yan Luo
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Jiao-Yang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, P. R. China
| | - Xu-Yu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Angmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
- Diabetes Clinical Medical Research Center of Hunan Provincial, Hengyang, Hunan, 421001, P. R. China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| |
Collapse
|
2
|
Xu M, Feng Y, Xiang X, Liu L, Tang G. MZB1 regulates cellular proliferation, mitochondrial dysfunction, and inflammation and targets the PI3K-Akt signaling pathway in acute pancreatitis. Cell Signal 2024; 118:111143. [PMID: 38508349 DOI: 10.1016/j.cellsig.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Acute pancreatitis (AP) is a pathological condition characterized by the premature release and activation of trypsinogens and other enzyme precursors. In severe cases, the mortality rates are in the range of 20-30% and may even be as high as 50%. Though various prophylaxes are available for AP, the mechanism of its progression is unclear. Marginal zone B and B-1 cell-specific protein 1 (MZB1) is found in the endoplasmic reticulum (ER) where it is expressed exclusively in the B cells there. MZB1 promotes proliferation, inhibits apoptosis, invasion, and inflammation, and mitigates mitochondrial damage in cells. However, the importance of MZB1 in AP has not yet been determined. METHODS Differentially expressed genes (DEGs) between healthy pancreatic cells and those affected by AP were identified using datasets from Gene Expression Omnibus (GEO) datasets. Relative differences in MZB1 expression between normal and diseased tissues and cells were validated in vivo using a rat AP model induced with 4% (w/v) sodium taurocholate and in vitro using the AR42J rat pancreatic cell line exposed to caerulein (CAE). Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2`-deoxyuridine (EdU) assays were performed to detect and compare normal and pathological cell proliferation. Flow cytometry was employed to assess and compare cellular apoptosis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB) were applied to evaluate the apoptotic factors Bax and Bcl. The inflammatory factors interleukin (IL)-6 and IL-1β were quantified using Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR techniques. Mitochondrial function was evaluated using assays for reactive oxygen species (ROS) and tetramethylrhodamine methyl ester (TMRM). WB and qRT-PCR were utilized to measure the expression levels of the PI3K-Akt signaling pathway, followed by a rescue experiment involving the inhibitor of wortmannin. RESULTS MZB1 was upregulated in the AP cases screened from the GEO datasets, the rat AP model, and the AR42J cells exposed to CAE. Overexpression of MZB1 enhanced the growth and supressed the cell death of AR42J cells while also activating the PI3K-Akt signaling pathway. MZB1 knockdown led to mitochondrial dysfunction and exacerbated inflammation. The rescue experiment demonstrated that MZB1 enhanced proliferation and inhibited apoptosis, mitochondrial dysfunction, and inflammation in pancreatic cells through the PI3K-Akt pathway. CONCLUSIONS AP cells and tissues exhibited markedly elevated levels of MZB1 expression compared to their healthy counterparts. MZB1 overexpression promoted proliferation and supressed apoptosis, mitochondrial dysfunction, and inflammation in pancreatic cells through the positive regulation of the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Mengtao Xu
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yong Feng
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xuelian Xiang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Liu
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guodu Tang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Deluca A, Wagner A, Heimel P, Deininger C, Wichlas F, Redl H, Rohde E, Tempfer H, Gimona M, Traweger A. Synergistic effect of umbilical cord extracellular vesicles and rhBMP-2 to enhance the regeneration of a metaphyseal femoral defect in osteoporotic rats. Stem Cell Res Ther 2024; 15:144. [PMID: 38764077 PMCID: PMC11103988 DOI: 10.1186/s13287-024-03755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate potential synergistic effects of a single, local application of human umbilical cord MSC-derived sEVs in combination with a low dose of recombinant human rhBMP-2 to promote the regeneration of a metaphyseal femoral defect in an osteoporotic rat model. METHODS 6 weeks after induction of osteoporosis by bilateral ventral ovariectomy and administration of a special diet, a total of 64 rats underwent a distal femoral metaphyseal osteotomy using a manual Gigli wire saw. Defects were stabilized with an adapted Y-shaped mini-locking plate and were subsequently treated with alginate only, or alginate loaded with hUC-MSC-sEVs (2 × 109), rhBMP-2 (1.5 µg), or a combination of sEVs and rhBMP-2 (n = 16 for each group). 6 weeks post-surgery, femora were evaluated by µCT, descriptive histology, and biomechanical testing. RESULTS Native radiographs and µCT analysis confirmed superior bony union with callus formation after treatment with hUC-MSC-sEVs in combination with a low dose of rhBMP-2. This finding was further substantiated by histology, showing robust defect consolidation 6 weeks after treatment. Torsion testing of the explanted femora revealed increased stiffness after application of both, rhBMP-2 alone, or in combination with sEVs, whereas torque was only significantly increased after treatment with rhBMP-2 together with sEVs. CONCLUSION The present study demonstrates that the co-application of hUC-MSC-sEVs can improve the efficacy of rhBMP-2 to promote the regeneration of osteoporotic bone defects.
Collapse
Affiliation(s)
- Amelie Deluca
- Institute of Tendon and Bone Regeneration, Salzburg, 5020, Austria.
- Department of Traumatology, KABEG-Klinikum Klagenfurt am Woerthersee, Klagenfurt, 9020, Austria.
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Salzburg, 5020, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Patrick Heimel
- Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, 1200, Austria
| | - Christian Deininger
- Institute of Tendon and Bone Regeneration, Salzburg, 5020, Austria
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Florian Wichlas
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, 1200, Austria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, Salzburger Landeskliniken GesmbH, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Salzburg, 5020, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Salzburg, 5020, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, 1200, Austria
| |
Collapse
|
4
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Grossini E, Smirne C, Venkatesan S, Tonello S, D'Onghia D, Minisini R, Cantaluppi V, Sainaghi PP, Comi C, Tanzi A, Bussolati B, Pirisi M. Plasma Pattern of Extracellular Vesicles Isolated from Hepatitis C Virus Patients and Their Effects on Human Vascular Endothelial Cells. Int J Mol Sci 2023; 24:10197. [PMID: 37373343 DOI: 10.3390/ijms241210197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis C virus (HCV) patients are at increased risk of cardiovascular disease (CVD). In this study, we aimed to evaluate the role of extracellular vesicles (EVs) as pathogenic factors for the onset of HCV-related endothelial dysfunction. Sixty-five patients with various stages of HCV-related chronic liver disease were enrolled in this case series. Plasma EVs were characterized and used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, and reactive oxygen species (ROS) release. The results showed that EVs from HCV patients were mainly of endothelial and lymphocyte origin. Moreover, EVs were able to reduce cell viability and mitochondrial membrane potential of HUVEC, while increasing ROS release. Those harmful effects were reduced by the pretreatment of HUVEC with the NLR family pyrin domain containing 3 (NLRP3)/AMP-activated protein kinase and protein kinase B blockers. In conclusion, in HCV patients, we could highlight a circulating pattern of EVs capable of inducing damage to the endothelium. These data represent a novel possible pathogenic mechanism underlying the reported increase of CVD occurrence in HCV infection and could be of clinical relevance also in relation to the widespread use of antiviral drugs.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Carlo Smirne
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Stelvio Tonello
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Davide D'Onghia
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Rosalba Minisini
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- CAAD-Center for Autoimmune and Allergic Diseases, and IRCAD-Interdisciplinary Research Center for Autoimmune Diseases, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Adele Tanzi
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Turin, Italy
| | - Benedetta Bussolati
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Turin, Italy
| | - Mario Pirisi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
6
|
Prem PN, Chellappan DR, Kurian GA. Impaired renal ischemia reperfusion recovery after bilateral renal artery ligation in rats treated with adenine: role of renal mitochondria. J Bioenerg Biomembr 2023; 55:219-232. [PMID: 37392294 DOI: 10.1007/s10863-023-09974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Vascular calcification (VC) and ischemia reperfusion (IR) injury is characterised to have mitochondrial dysfunction. However, the impact of dysfunctional mitochondria associated with vascular calcified rat kidney challenged to IR is not explored and is addressed in the present study. Male Wistar rats were treated with adenine for 20 days to induce chronic kidney dysfunction and VC. After 63 days, renal IR protocol was performed with subsequent recovery for 24 h and 7 days. Various mitochondrial parameters and biochemical assays were performed to assess kidney function, IR injury and its recovery. Adenine-induced rats with VC, decreased creatinine clearance (CrCl), and severe tissue injury demonstrated an increase in renal tissue damage and decreased CrCl after 24 h of IR (CrCl in ml: IR-0.220.02, VC-IR-0.050.01). Incidentally, the 24 h IR pathology in kidney was similar in both VC-IR and normal rat IR. But, the magnitude of dysfunction was higher with VC-IR due to pre-existing basal tissue alterations. We found severed deterioration in mitochondrial quantity and quality supported by low bioenergetic function in both VC basal tissue and IR challenged sample. However, post 7 days of IR, unlike normal rat IR, VC rat IR did not improve CrCl and corresponding mitochondrial damage in terms of quantity and its function were observed. Based on the above findings, we conclude that IR in VC rat adversely affect the post-surgical recovery, mainly due to the ineffective renal mitochondrial functional restoration from the surgery.
Collapse
Affiliation(s)
- Priyanka N Prem
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
7
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
8
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
9
|
Yu X, Dai C, Zhao X, Huang Q, He X, Zhang R, Lin Z, Shen Y. Ruthenium red attenuates acute pancreatitis by inhibiting MCU and improving mitochondrial function. Biochem Biophys Res Commun 2022; 635:236-243. [DOI: 10.1016/j.bbrc.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
|
10
|
Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J. Mitochondrial Stress in Metabolic Inflammation: Modest Benefits and Full Losses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8803404. [PMID: 36457729 PMCID: PMC9708372 DOI: 10.1155/2022/8803404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/02/2023]
Abstract
Energy intake and metabolic balance are the pillars of health preservation. Overnutrition causes nonspecific, persistently low inflammatory state known as metabolic inflammation. This condition contributes to the pathophysiology of various metabolic disorders, such as atherosclerosis, obesity, diabetes mellitus, and metabolic syndrome. The mitochondria maintain the balance of energy metabolism. Excessive energy stress can lead to mitochondrial dysfunction, which promotes metabolic inflammation. The inflammatory environment further impairs mitochondrial function. Accordingly, excellent organism design keeps the body metabolically healthy in the context of mitochondrial dysfunction, and moderate mitochondrial stress can have a beneficial effect. This review summarises the research progress on the multifaceted characterisation of mitochondrial dysfunction and its role in metabolic inflammation.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Z. L. Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiqi Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Diabetes Clinical Medical Research Center of Hunan Province, Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
11
|
Zeng ZL, Xie H. Mesenchymal stem cell-derived extracellular vesicles: a possible therapeutic strategy for orthopaedic diseases: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:175-187. [PMID: 36654775 PMCID: PMC9840092 DOI: 10.12336/biomatertransl.2022.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 08/02/2022] [Indexed: 01/20/2023]
Abstract
Accumulating evidence suggests that the therapeutic role of mesenchymal stem cells (MSCs) in bone diseases is closely related to paracrine-generated extracellular vesicles (EVs). MSC-derived EVs (MSC-EVs) carry proteins, nucleic acids, and lipids to the extracellular space and affect the bone microenvironment. They have similar biological functions to MSCs, such as the ability to repair organ and tissue damage. In addition, MSC-EVs also have the advantages of long half-life, low immunogenicity, attractive stability, ability to pass through the blood-brain barrier, and demonstrate excellent performance with potential practical applications in bone diseases. In this review, we summarise the current applications and mechanisms of MSC-EVs in osteoporosis, osteoarthritis, bone tumours, osteonecrosis of the femoral head, and fractures, as well as the development of MSC-EVs combined with materials science in the field of orthopaedics. Additionally, we explore the critical challenges involved in the clinical application of MSC-EVs in orthopaedic diseases.
Collapse
Affiliation(s)
- Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China,Department of Clinical Medicine, The First Affliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,Corresponding author: Hui Xie,
| |
Collapse
|