1
|
Nezamuldeen L, Jafri MS. Boolean Modeling of Biological Network Applied to Protein-Protein Interaction Network of Autism Patients. BIOLOGY 2024; 13:606. [PMID: 39194544 DOI: 10.3390/biology13080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Cellular molecules interact with one another in a structured manner, defining a regulatory network topology that describes cellular mechanisms. Genetic mutations alter these networks' pathways, generating complex disorders such as autism spectrum disorder (ASD). Boolean models have assisted in understanding biological system dynamics since Kauffman's 1969 discovery, and various analytical tools for regulatory networks have been developed. This study examined the protein-protein interaction network created in our previous publication of four ASD patients using the SPIDDOR R package, a Boolean model-based method. The aim is to examine how patients' genetic variations in INTS6L, USP9X, RSK4, FGF5, FLNA, SUMF1, and IDS affect mTOR and Wnt cell signaling convergence. The Boolean network analysis revealed abnormal activation levels of essential proteins such as β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD. These proteins affect gene expression, translation, cell adhesion, shape, and migration. Patients 1 and 2 showed consistent patterns of increased β-catenin activity and decreased MTORC1, RPS6, and eIF4E activity. However, patient 2 had an independent decrease in Cadherin and SMAD activity due to the FLNA mutation. Patients 3 and 4 have an abnormal activation of the mTOR pathway, which includes the MTORC1, RPS6, and eIF4E genes. The shared mTOR pathway behavior in these patients is explained by a shared mutation in two closely related proteins (SUMF1 and IDS). Diverse activities in β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD contributed to the reported phenotype in these individuals. Furthermore, it unveiled the potential therapeutic options that could be suggested to these individuals.
Collapse
Affiliation(s)
- Leena Nezamuldeen
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Chagas MDS, Trindade dos Santos M, Argollo de Menezes M, da Silva FAB. Boolean model of the gene regulatory network of Pseudomonas aeruginosa CCBH4851. Front Microbiol 2023; 14:1274740. [PMID: 38152377 PMCID: PMC10752298 DOI: 10.3389/fmicb.2023.1274740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Pseudomonas aeruginosa infections are one of the leading causes of death in immunocompromised patients with cystic fibrosis, diabetes, and lung diseases such as pneumonia and bronchiectasis. Furthermore, P. aeruginosa is one of the main multidrug-resistant bacteria responsible for nosocomial infections worldwide, including the multidrug-resistant CCBH4851 strain isolated in Brazil. Methods One way to analyze their dynamic cellular behavior is through computational modeling of the gene regulatory network, which represents interactions between regulatory genes and their targets. For this purpose, Boolean models are important predictive tools to analyze these interactions. They are one of the most commonly used methods for studying complex dynamic behavior in biological systems. Results and discussion Therefore, this research consists of building a Boolean model of the gene regulatory network of P. aeruginosa CCBH4851 using data from RNA-seq experiments. Next, the basins of attraction are estimated, as these regions and the transitions between them can help identify the attractors, representing long-term behavior in the Boolean model. The essential genes of the basins were associated with the phenotypes of the bacteria for two conditions: biofilm formation and polymyxin B treatment. Overall, the Boolean model and the analysis method proposed in this work can identify promising control actions and indicate potential therapeutic targets, which can help pinpoint new drugs and intervention strategies.
Collapse
|
3
|
Carels N, Sgariglia D, Junior MGV, Lima CR, Carneiro FRG, da Silva GF, da Silva FAB, Scardini R, Tuszynski JA, de Andrade CV, Monteiro AC, Martins MG, da Silva TG, Ferraz H, Finotelli PV, Balbino TA, Pinto JC. A Strategy Utilizing Protein-Protein Interaction Hubs for the Treatment of Cancer Diseases. Int J Mol Sci 2023; 24:16098. [PMID: 38003288 PMCID: PMC10671768 DOI: 10.3390/ijms242216098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 11/26/2023] Open
Abstract
We describe a strategy for the development of a rational approach of neoplastic disease therapy based on the demonstration that scale-free networks are susceptible to specific attacks directed against its connective hubs. This strategy involves the (i) selection of up-regulated hubs of connectivity in the tumors interactome, (ii) drug repurposing of these hubs, (iii) RNA silencing of non-druggable hubs, (iv) in vitro hub validation, (v) tumor-on-a-chip, (vi) in vivo validation, and (vii) clinical trial. Hubs are protein targets that are assessed as targets for rational therapy of cancer in the context of personalized oncology. We confirmed the existence of a negative correlation between malignant cell aggressivity and the target number needed for specific drugs or RNA interference (RNAi) to maximize the benefit to the patient's overall survival. Interestingly, we found that some additional proteins not generally targeted by drug treatments might justify the addition of inhibitors designed against them in order to improve therapeutic outcomes. However, many proteins are not druggable, or the available pharmacopeia for these targets is limited, which justifies a therapy based on encapsulated RNAi.
Collapse
Affiliation(s)
- Nicolas Carels
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Domenico Sgariglia
- Engenharia de Sistemas e Computação, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-972, RJ, Brazil;
| | - Marcos Guilherme Vieira Junior
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Carlyle Ribeiro Lima
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Flávia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
| | - Gilberto Ferreira da Silva
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (C.R.L.); (G.F.d.S.)
| | - Fabricio Alves Barbosa da Silva
- Computational Modeling of Biological Systems, Scientific Computing Program (PROCC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil or (M.G.V.J.); (F.A.B.d.S.)
| | - Rafaela Scardini
- Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, RJ, Brazil; (F.R.G.C.); (R.S.)
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, RJ, Brazil
- Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-255, RJ, Brazil
| | - Jack Adam Tuszynski
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy;
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada
| | - Cecilia Vianna de Andrade
- Department of Pathology, Instituto Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 22250-020, RJ, Brazil;
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro 24210-201, RJ, Brazil;
| | - Marcel Guimarães Martins
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Talita Goulart da Silva
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Helen Ferraz
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| | - Priscilla Vanessa Finotelli
- Laboratório de Nanotecnologia Biofuncional, Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Tiago Albertini Balbino
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil;
| | - José Carlos Pinto
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, RJ, Brazil; (M.G.M.); (T.G.d.S.); (H.F.); (J.C.P.)
| |
Collapse
|