1
|
Boscarino JJ, Weitzner DS, Bailey EK, Kamper JE, Vanderbleek EN. Utility of learning ratio scores from the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word List Memory Test in distinguishing patterns of cognitive decline in veterans referred for neuropsychological evaluation. Clin Neuropsychol 2024; 38:1967-1979. [PMID: 38494420 DOI: 10.1080/13854046.2024.2330144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Background: The Learning Ratio (LR) is a novel learning score that has shown improved utility over other learning metrics in detecting Alzheimer's disease (AD) across multiple memory tasks. However, its utility on the Consortium to Establish a Registry for Alzheimer's Disease Word List Memory Test (CERAD WLMT), a widely used list learning measure sensitive to decline in neurodegenerative disease, is unknown. The goal of the current study was to determine the utility of LR on the CERAD WLMT in differentiating between diagnostic (MiNCD vs MaNCD) and etiologic groups (VaD vs AD) in a veteran sample. Methods: Raw learning slope (RLS) and LR scores were examined in 168 veterans diagnosed with major neurocognitive disorder (MaNCD), mild neurocognitive disorder (MiNCD), or normal aging following neuropsychological evaluation. Patients with MaNCD were further classified by suspected etiology (i.e. microvascular disease vs AD). Results: Whereas RLS scores were not significantly different between MiNCD and MaNCD, LR scores were significantly different between all diagnostic groups (p's < .05). Those with AD had lower LR scores and RLS scores compared to those with VaD (p's < .05). LR classification accuracy was acceptable for MiNCD (AUC = .76), excellent for MaNCD (AUC = .86) and VaD (AUC = .81), and outstanding for AD (AUC = .91). Optimal cutoff scores for WLMT LR were derived from Youden's index. Conclusion: Results support the use of LR scores over RLS when interpreting the CERAD WLMT and highlight the clinical utility of LR in differentiating between diagnostic groups and identifying suspected etiology.
Collapse
Affiliation(s)
- Joseph J Boscarino
- Mental Health and Behavioral Service, James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Daniel S Weitzner
- Mental Health and Behavioral Service, James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Erin K Bailey
- Mental Health and Behavioral Service, James A. Haley Veterans' Hospital, Tampa, Florida, USA
- Department of Psychiatry, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Joel E Kamper
- Mental Health and Behavioral Service, James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Emily N Vanderbleek
- Mental Health and Behavioral Service, James A. Haley Veterans' Hospital, Tampa, Florida, USA
| |
Collapse
|
2
|
Bruno D, Jauregi‐Zinkunegi A, Bock JR. Predicting CDR status over 36 months with a recall-based digital cognitive biomarker. Alzheimers Dement 2024; 20:7274-7280. [PMID: 39258756 PMCID: PMC11485075 DOI: 10.1002/alz.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Word-list recall tests are routinely used for cognitive assessment, and process scoring may improve their accuracy. We examined whether Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) derived, process-based digital cognitive biomarkers (DCBs) at baseline predicted Clinical Dementia Rating (CDR) longitudinally and compared them to standard metrics. METHODS Analyses were performed with Alzheimer's Disease Neuroimaging Initiative (ADNI) data from 330 participants (mean age = 71.4 ± 7.2). We conducted regression analyses predicting CDR at 36 months, controlling for demographics and genetic risk, with ADAS-Cog traditional scores and DCBs as predictors. RESULTS The best predictor of CDR at 36 months was M, a DCB reflecting recall ability (area under the curve = 0.84), outperforming traditional scores. Diagnostic results suggest that M may be particularly useful to identify individuals who are unlikely to decline. DISCUSSION These results suggest that M outperforms ADAS-Cog traditional metrics and supports process scoring for word-list recall tests. More research is needed to determine further applicability with other tests and populations. HIGHLIGHTS Process scoring and latent modeling were more effective than traditional scoring. Latent recall ability (M) was the best predictor of Clinical Dementia Rating decline at 36 months. The top digital cognitive biomarker model had odds ≈ 90 times greater than the top Alzheimer's Disease Assessment Scale-Cognitive subscale model. Particularly high negative predictive value supports literature on cognitive testing as a useful screen. Consideration of both cognitive and pathological outcomes is needed.
Collapse
Affiliation(s)
- Davide Bruno
- School of PsychologyLiverpool John Moores UniversityLiverpoolUK
| | | | | | | |
Collapse
|
3
|
Zhu W, Zhou X, Ren M, Yin W, Tang Y, Yin J, Sun Y, Zhu X, Sun Z. Process approach as a cognitive biomarker related to gray matter volume in mild cognitive impairment and Alzheimer's disease. BMC Neurol 2024; 24:199. [PMID: 38872077 PMCID: PMC11170873 DOI: 10.1186/s12883-024-03711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Process approach is valuable for memory assessment in Alzheimer's disease (AD) and mild cognitive impairment (MCI), yet its underlying mechanisms remain elusive. This study aims to synergize the process approach with brain structure analysis to explore both the discriminative capacity and potential mechanisms underlying the process approach. METHODS 37 subjects of MCI, 35 subjects of AD and 38 subjects of healthy control (HC) were included. The process approach in Auditory Verbal Learning Test (AVLT), including discriminability (A'), response bias (B"D), semantic clustering (LBCsem) and serial clustering (LBCser) was performed. The gray matter volume (GMV) was analyzed by voxel-based morphometry. Receiver operating characteristic (ROC) analysis and partial correlations were conducted to explore the value of the process approach and investigate the relationship between the process approach, traditional indices of AVLT and GMV. RESULTS ROC analysis showed the value of A', B"D and LBCser in differentiating MCI and AD. Combining AVLT-Immediately Recall (AVLT-IR) and LBCser showed a higher value in diagnosing MCI. Partial correlations revealed that in the MCI group, A' and B"D were mainly positively associated with GMV of the hippocampus and temporal lobe. CONCLUSION This study indicated that the process approach is a promising cognitive biomarker to detect MCI and AD.
Collapse
Affiliation(s)
- Wenhao Zhu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Xia Zhou
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Mengmeng Ren
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Wenwen Yin
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Yating Tang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Jiabin Yin
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Yue Sun
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China
| | - Zhongwu Sun
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei, 230022, China.
| |
Collapse
|
4
|
Jauregi Zinkunegi A, Bruno D, Betthauser TJ, Koscik RL, Asthana S, Chin NA, Hermann BP, Johnson SC, Mueller KD. A comparison of story-recall metrics to predict hippocampal volume in older adults with and without cognitive impairment. Clin Neuropsychol 2024; 38:453-470. [PMID: 37349970 PMCID: PMC10739621 DOI: 10.1080/13854046.2023.2223389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Objective: Process-based scores of episodic memory tests, such as the recency ratio (Rr), have been found to compare favourably to, or to be better than, most conventional or "traditional" scores employed to estimate memory ability in older individuals (Bock et al., 2021; Bruno et al., 2019). We explored the relationship between process-based scores and hippocampal volume in older adults, while comparing process-based to traditional story recall-derived scores, to examine potential differences in their predictive abilities. Methods: We analysed data from 355 participants extracted from the WRAP and WADRC databases, who were classified as cognitively unimpaired, or exhibited mild cognitive impairment (MCI) or dementia. Story Recall was measured with the Logical Memory Test (LMT) from the Weschler Memory Scale Revised, collected within twelve months of the magnetic resonance imaging scan. Linear regression analyses were conducted with left or right hippocampal volume (HV) as outcomes separately, and with Rr, Total ratio, Immediate LMT, or Delayed LMT scores as predictors, along with covariates. Results: Higher Rr and Tr scores significantly predicted lower left and right HV, while Tr showed the best model fit of all, as indicated by AIC. Traditional scores, Immediate LMT and Delayed LMT, were significantly associated with left and right HV, but were outperformed by both process-based scores for left HV, and by Tr for right HV. Conclusions: Current findings show the direct relationship between hippocampal volume and all the LMT scores examined here, and that process-based scores outperform traditional scores as markers of hippocampal volume.
Collapse
Affiliation(s)
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, UK
| | - Tobey J. Betthauser
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
| | - Rebecca Langhough Koscik
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Nathaniel A. Chin
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Department of Neurology, University of Wisconsin – Madison, Madison, WI, USA
| | - Sterling C. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Kimberly D. Mueller
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Bruno D, Gicas KM, Jauregi‐Zinkunegi A, Mueller KD, Lamar M. Delayed primacy recall performance predicts post mortem Alzheimer's disease pathology from unimpaired ante mortem cognitive baseline. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12524. [PMID: 38239330 PMCID: PMC10795090 DOI: 10.1002/dad2.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
We propose a novel method to assess delayed primacy in the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) memory test. We then examine whether this measure predicts post mortem Alzheimer's disease (AD) neuropathology in individuals who were clinically unimpaired at baseline. A total of 1096 individuals were selected from the Rush Alzheimer's Disease Center database registry. All participants were clinically unimpaired at baseline, and had subsequently undergone brain autopsy. Average age at baseline was 78.8 (6.92). A Bayesian regression analysis was carried out with global pathology as an outcome; demographic, clinical, and apolipoprotein E (APOE) data as covariates; and cognitive predictors, including delayed primacy. Global AD pathology was best predicted by delayed primacy. Secondary analyses showed that delayed primacy was mostly associated with neuritic plaques, whereas total delayed recall was associated with neurofibrillary tangles. Sex differential associations were observed. We conclude that CERAD-derived delayed primacy is a useful metric for early detection and diagnosis of AD in unimpaired individuals. Highlights We propose a novel method to analyse serial position in the CERAD memory test.We analyse data from 1096 individuals who were cognitively unimpaired at baseline.Delayed primacy predicts post mortem pathology better than traditional metrics.
Collapse
Affiliation(s)
- Davide Bruno
- School of PsychologyLiverpool John Moores UniversityLiverpoolUK
| | | | | | - Kimberly D. Mueller
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin – MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin – MadisonMadisonWisconsinUSA
- Department of Communication Sciences and DisordersUniversity of Wisconsin – MadisonMadisonWisconsinUSA
| | - Melissa Lamar
- Rush Alzheimer's Disease Center and the Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
6
|
Alam JJ, Maruff P, Doctrow SR, Chu HM, Conway J, Gomperts SN, Teunissen C. Association of Plasma Phosphorylated Tau With the Response to Neflamapimod Treatment in Patients With Dementia With Lewy Bodies. Neurology 2023; 101:e1708-e1717. [PMID: 37657939 PMCID: PMC10624490 DOI: 10.1212/wnl.0000000000207755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/21/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In a proportion of patients, dementia with Lewy bodies (DLB) is associated with Alzheimer disease (AD) copathology, which is linked to accelerated cognitive decline and more extensive cortical atrophy. The objective was to evaluate the relationship between a biomarker of AD copathology, plasma tau phosphorylated at residue 181 (ptau181), and the treatment effects of the p38α kinase inhibitor neflamapimod, which targets the cholinergic degenerative process in DLB. METHODS The AscenD-LB study was a phase 2a, randomized (1:1), 16-week, placebo-controlled clinical trial of neflamapimod in DLB, the main results of which have been published. After the study was completed (i.e., post hoc), pretreatment plasma ptau181 levels were determined and participants were grouped based on a cutoff for AD pathology of 2.2 pg/mL (established in a separate cohort to identify AD from healthy controls). Clinical outcomes for the comparison of placebo with neflamapimod 40 mg three times daily (TID; the higher and more clinically active of 2 doses studied) were analyzed using mixed models for repeated measures within each subgroup (baseline plasma ptau181 < and ≥2.2 pg/mL). RESULTS Pretreatment plasma ptau181 levels were determined in eighty-five participants with mild-to-moderate DLB receiving cholinesterase inhibitors, with 45 participants below and 40 above the 2.2 pg/mL cutoff at baseline. In the 16-week treatment period, in the comparison of placebo with neflamapimod 40 mg TID, for all end points evaluated, improvements with neflamapimod treatment were greater in participants below the cutoff, compared with those above the cutoff. In addition, participants below the ptau181 cutoff at baseline showed significant improvement over placebo in an attention composite measure (+0.42, 95% CI 0.07-0.78, p = 0.023, d = 0.78), the Clinical Dementia Rating Scale Sum of Boxes (-0.60, 95% CI -1.04 to -0.06, p = 0.031, d = 0.70), the Timed Up and Go test (-3.1 seconds, 95% CI -4.7 to -1.6, p < 0.001, d = 0.74), and International Shopping List Test-Recognition (+1.4, 95% CI 0.2-2.5, p = 0.024, d = 1.00). DISCUSSION Exclusion of patients with elevated plasma ptau181, potentially through excluding patients with extensive cortical neurodegeneration, enriches for a patient with DLB population that is more responsive to neflamapimod. More generally, plasma biomarkers of AD copathology at study entry should be considered as stratification variables in DLB clinical trials. TRIAL REGISTRATION INFORMATION NCT04001517 at ClinicalTrials.gov.
Collapse
Affiliation(s)
- John J Alam
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| | - Paul Maruff
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Susan R Doctrow
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Hui-May Chu
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jennifer Conway
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Stephen N Gomperts
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Charlotte Teunissen
- From the CervoMed (formerly EIP Pharma) (J.J.A., S.R.D., J.C.), Inc., Boston, MA; CogState Ltd London (P.M.), United Kingdom; Anoixis Corporation (H.-M.C.), Natick; Massachusetts Alzheimer's Disease Research Center (S.N.G.), Department of Neurology, Massachusetts General Hospital, Charlestown; and Neurochemistry Lab (C.T.), Department of Laboratory Medicine, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
7
|
Dörr F, Schäfer S, Öhman F, Linz N, Bodin TH, Skoog J, Zettergren A, Kern S, Skoog I, Tröger J. Dissociating memory and executive function impairment through temporal features in a word list verbal learning task. Neuropsychologia 2023; 189:108679. [PMID: 37683887 DOI: 10.1016/j.neuropsychologia.2023.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The Rey Auditory Verbal Learning Test (RAVLT) is an established verbal learning test commonly used to quantify memory impairments due to Alzheimer's Disease (AD) both at a clinical dementia stage or prodromal stage of mild cognitive impairment (MCI). Focal memory impairment-as quantified e.g. by the RAVLT-at an MCI stage is referred to as amnestic MCI (aMCI) and is often regarded as the cognitive phenotype of prodromal AD. However, recent findings suggest that not only learning and memory but also other cognitive domains, especially executive functions (EF) and processing speed (PS), influence verbal learning performance. This research investigates whether additional temporal features extracted from audio recordings from a participant's RAVLT response can better dissociate memory and EF in such tasks and eventually help to better describe MCI subtypes. 675 age-matched participants from the H70 Swedish birth cohort were included in this analysis; 68 participants were classified as MCI (33 aMCI and 35 due to executive impairment). RAVLT performances were recorded and temporal features extracted. Novel temporal features were correlated with established neuropsychological tests measuring EF and PS. Lastly, the downstream diagnostic potential of temporal features was estimated using group differences and a machine learning (ML) classification scenario. Temporal features correlated moderately with measures of EF and PS. Performance of an ML classifier could be improved by adding temporal features to traditional counts. We conclude that RAVLT temporal features are in general related to EF and that they might be capable of dissociating memory and EF in a word list learning task.
Collapse
Affiliation(s)
| | | | - Fredrik Öhman
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Timothy Hadarsson Bodin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Skoog
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Silke Kern
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingmar Skoog
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
8
|
Bruno D, Zinkunegi AJ, Pomara N, Zetterberg H, Blennow K, Koscik RL, Carlsson C, Bendlin B, Okonkwo O, Hermann BP, Johnson SC, Mueller KD. Cross-sectional associations of CSF tau levels with Rey's AVLT: A recency ratio study. Neuropsychology 2023; 37:628-635. [PMID: 35604714 PMCID: PMC9681933 DOI: 10.1037/neu0000821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The preeminent in vivo cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) are amyloid β 1-42 (Aβ42), phosphorylated Tau (p-tau), and total Tau (t-tau). The goal of this study was to examine how well traditional (total and delayed recall) and process-based (recency ratio [Rr]) measures derived from Rey's Auditory Verbal Learning test (AVLT) were associated with these biomarkers. METHOD Data from 235 participants (Mage = 65.5, SD = 6.9), who ranged from cognitively unimpaired to mild cognitive impairment, and for whom CSF values were available, were extracted from the Wisconsin Registry for Alzheimer's Prevention. Bayesian regression analyses were carried out using CSF scores as outcomes, AVLT scores as predictors, and controlling for demographic data and diagnosis. RESULTS We found moderate evidence that Rr was associated with both CSF p-tau (Bayesian factor [BFM] = 5.55) and t-tau (BFM = 7.28), above and beyond the control variables, while it did not correlate with CSF Aβ42 levels. In contrast, total and delayed recall scores were not linked with any of the AD biomarkers, in separate analyses. When comparing all memory predictors in a single regression, Rr remained the strongest predictor of CSF t-tau levels (BFM = 3.57). CONCLUSIONS Our findings suggest that Rr may be a better cognitive measure than commonly used AVLT scores to assess CSF levels of p-tau and t-tau in nondemented individuals. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Davide Bruno
- School of Psychology, Liverpool John Moores University
| | | | - Nunzio Pomara
- Geriatric Psychiatry Division, Nathan Kline Institute, Orangeburg, New York, United States
- School of Medicine, New York University
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rebecca Langhough Koscik
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison
| | - Cynthia Carlsson
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Medicine, University of Wisconsin–Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wisconsin, United States
| | - Barbara Bendlin
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Medicine, University of Wisconsin–Madison
| | - Ozioma Okonkwo
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Medicine, University of Wisconsin–Madison
| | - Bruce P. Hermann
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Neurology, University of Wisconsin–Madison
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Medicine, University of Wisconsin–Madison
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wisconsin, United States
| | - Kimberly D. Mueller
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin–Madison
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin–Madison
- Department of Communication Sciences and Disorders, University of Wisconsin–Madison
| |
Collapse
|
9
|
Bruno D, Gicas KM, Jauregi Zinkunegi A, Mueller KD, Lamar M. Delayed primacy recall performance predicts post mortem Alzheimer's disease pathology from unimpaired ante mortem cognitive baseline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546225. [PMID: 37425732 PMCID: PMC10327046 DOI: 10.1101/2023.06.26.546225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
INTRODUCTION We propose a novel method to assess delayed primacy in the CERAD memory test. We then examine whether this measure predicts post mortem Alzheimer's disease (AD) neuropathology in individuals who were clinically unimpaired at baseline. METHODS A total of 1096 individuals were selected from the Rush Alzheimer's Disease Center database registry. All participants were clinically unimpaired at baseline, and had subsequently undergone brain autopsy. Average age at baseline was 78.8 (6.92). A Bayesian regression analysis was carried out with global pathology as outcome; demographic, clinical and APOE data as covariates; and cognitive predictors, including delayed primacy. RESULTS Global AD pathology was best predicted by delayed primacy. Secondary analyses showed that delayed primacy was mostly associated with neuritic plaques, whereas total delayed recall was associated with neurofibrillary tangles. DISCUSSION We conclude that CERAD-derived delayed primacy is a useful metric for early detection and diagnosis of AD in unimpaired individuals.
Collapse
Affiliation(s)
- Davide Bruno
- School of Psychology, Liverpool John Moores University, UK
| | | | | | - Kimberly D. Mueller
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin – Madison, Madison, WI, USA
| | - Melissa Lamar
- Rush Alzheimer’s Disease Center and the Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
Bruno D, Jauregi Zinkunegi A, Kollmorgen G, Suridjan I, Wild N, Carlsson C, Bendlin B, Okonkwo O, Chin N, Hermann BP, Asthana S, Zetterberg H, Blennow K, Langhough R, Johnson SC, Mueller KD. The recency ratio assessed by story recall is associated with cerebrospinal fluid levels of neurodegeneration biomarkers. Cortex 2023; 159:167-174. [PMID: 36630749 PMCID: PMC9931664 DOI: 10.1016/j.cortex.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Recency refers to the information learned at the end of a study list or task. Recency forgetting, as tracked by the ratio between recency recall in immediate and delayed conditions, i.e., the recency ratio (Rr), has been applied to list-learning tasks, demonstrating its efficacy in predicting cognitive decline, conversion to mild cognitive impairment (MCI), and cerebrospinal fluid (CSF) biomarkers of neurodegeneration. However, little is known as to whether Rr can be effectively applied to story recall tasks. To address this question, data were extracted from the database of the Alzheimer's Disease Research Center at the University of Wisconsin - Madison. A total of 212 participants were included in the study. CSF biomarkers were amyloid-beta (Aβ) 40 and 42, phosphorylated (p) and total (t) tau, neurofilament light (NFL), neurogranin (Ng), and α-synuclein (a-syn). Story Recall was measured with the Logical Memory Test (LMT). We carried out Bayesian regression analyses with Rr, and other LMT scores as predictors; and CSF biomarkers (including the Aβ42/40 and p-tau/Aβ42 ratios) as outcomes. Results showed that models including Rr consistently provided best fits with the data, with few exceptions. These findings demonstrate the applicability of Rr to story recall and its sensitivity to CSF biomarkers of neurodegeneration, and encourage its inclusion when evaluating risk of neurodegeneration with story recall.
Collapse
Affiliation(s)
- Davide Bruno
- School of Psychology, Liverpool John Moores University, UK.
| | | | | | | | | | - Cynthia Carlsson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Barbara Bendlin
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ozioma Okonkwo
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Neurology, University of Wisconsin - Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rebecca Langhough
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Kimberly D Mueller
- Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA; Department of Communication Sciences and Disorders, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
11
|
Bruno D, Jauregi Zinkunegi A, Pomara N, Zetterberg H, Blennow K, Koscik RL, Carlsson C, Bendlin B, Okonkwo O, Hermann BP, Johnson SC, Mueller KD. Cross-sectional associations of CSF tau levels with Rey's AVLT: A recency ratio study. Neuropsychology 2022. [PMID: 35604714 DOI: 10.1037/neu0000821.advanceonlinepublication] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE The preeminent in vivo cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) are amyloid β 1-42 (Aβ42), phosphorylated Tau (p-tau), and total Tau (t-tau). The goal of this study was to examine how well traditional (total and delayed recall) and process-based (recency ratio [Rr]) measures derived from Rey's Auditory Verbal Learning test (AVLT) were associated with these biomarkers. METHOD Data from 235 participants (Mage = 65.5, SD = 6.9), who ranged from cognitively unimpaired to mild cognitive impairment, and for whom CSF values were available, were extracted from the Wisconsin Registry for Alzheimer's Prevention. Bayesian regression analyses were carried out using CSF scores as outcomes, AVLT scores as predictors, and controlling for demographic data and diagnosis. RESULTS We found moderate evidence that Rr was associated with both CSF p-tau (Bayesian factor [BFM] = 5.55) and t-tau (BFM = 7.28), above and beyond the control variables, while it did not correlate with CSF Aβ42 levels. In contrast, total and delayed recall scores were not linked with any of the AD biomarkers, in separate analyses. When comparing all memory predictors in a single regression, Rr remained the strongest predictor of CSF t-tau levels (BFM = 3.57). CONCLUSIONS Our findings suggest that Rr may be a better cognitive measure than commonly used AVLT scores to assess CSF levels of p-tau and t-tau in nondemented individuals. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|