1
|
Huang Y, Osouli A, Pham J, Mancino V, O'Grady C, Khan T, Chaudhuri B, Pastor-Soler NM, Hallows KR, Chung EJ. Investigation of Basolateral Targeting Micelles for Drug Delivery Applications in Polycystic Kidney Disease. Biomacromolecules 2024; 25:2749-2761. [PMID: 38652072 DOI: 10.1021/acs.biomac.3c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ali Osouli
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Colette O'Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Taranatee Khan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Baishali Chaudhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Nuria M Pastor-Soler
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
He J, Gao Y, Yang C, Guo Y, Liu L, Lu S, He H. Navigating the landscape: Prospects and hurdles in targeting vascular smooth muscle cells for atherosclerosis diagnosis and therapy. J Control Release 2024; 366:261-281. [PMID: 38161032 DOI: 10.1016/j.jconrel.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Vascular smooth muscle cells (VSMCs) have emerged as pivotal contributors throughout all phases of atherosclerotic plaque development, effectively dispelling prior underestimations of their prevalence and significance. Recent lineage tracing studies have unveiled the clonal nature and remarkable adaptability inherent to VSMCs, thereby illuminating their intricate and multifaceted roles in the context of atherosclerosis. This comprehensive review provides an in-depth exploration of the intricate mechanisms and distinctive characteristics that define VSMCs across various physiological processes, firmly underscoring their paramount importance in shaping the course of atherosclerosis. Furthermore, this review offers a thorough examination of the significant strides made over the past two decades in advancing imaging techniques and therapeutic strategies with a precise focus on targeting VSMCs within atherosclerotic plaques, notably spotlighting meticulously engineered nanoparticles as a promising avenue. We envision the potential of VSMC-targeted nanoparticles, thoughtfully loaded with medications or combination therapies, to effectively mitigate pro-atherogenic VSMC processes. These advancements are poised to contribute significantly to the pivotal objective of modulating VSMC phenotypes and enhancing plaque stability. Moreover, our paper also delves into recent breakthroughs in VSMC-targeted imaging technologies, showcasing their remarkable precision in locating microcalcifications, dynamically monitoring plaque fibrous cap integrity, and assessing the therapeutic efficacy of medical interventions. Lastly, we conscientiously explore the opportunities and challenges inherent in this innovative approach, providing a holistic perspective on the potential of VSMC-targeted strategies in the evolving landscape of atherosclerosis research and treatment.
Collapse
Affiliation(s)
- Jianhua He
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Yu Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Can Yang
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yujie Guo
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Lisha Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Shan Lu
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
3
|
Luo H, Zhao L, Dong B, Liu Y. MiR-375 Inhibitor Alleviates Inflammation and Oxidative Stress by Upregulating the GPR39 Expression in Atherosclerosis. Int Heart J 2024; 65:135-145. [PMID: 38296567 DOI: 10.1536/ihj.23-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Atherosclerosis may be caused or developed by an immune response and antioxidation imbalance. MicroRNA-375 (miR-375) or G-protein-coupled receptor 39 (GPR39) is involved in vascular endothelial cell injury, but their role in atherosclerosis is unknown. This experiment aimed to determine the action of the miR-375/GPR39 axis in atherosclerosis.Human aortic endothelial cells (HAECs) were treated with 10 ng/mL of oxidised low-density lipoprotein (ox-LDL) for 24 hours to induce HAEC injury, which was treated by the miR-375 inhibitor, GPR39 inhibitor, or agonist. High-fat diet (HFD) -induced ApoE-/- mice were made as an atherosclerosis model for miR-375 inhibitor treatment. Cell Counting Kit-8 was applied to detect HAEC viability. HAEC apoptosis and ROS levels were measured using flow cytometry. Vascular histopathology and the GPR39 expression were detected using hematoxylin-eosin and immunohistochemistry. The expressions of interleukin (IL) -6, IL-1β, and tumour necrosis factor-α (TNF-α) were assessed using an enzyme-linked immunosorbent assay. The miR-375, GPR39, NOX-4, and p-IκBα/IκBα levels were measured using quantitative reverse transcription polymerase chain reaction or western blot.MiR-375 and GPR39 levels increased and decreased in ox-LDL-treated HAECs, respectively. The miR-375 inhibitor or GPR39 agonist promoted cell viability and inhibited apoptosis in ox-LDL-induced HAEC injury. The miR-375 inhibitor also significantly downregulated the IL-6, IL-1β, TNF-α, p-IκBα/IκBα, ROS, and NOX-4 expressions to alleviate oxidative stress and inflammation, which were reversed by the GPR39 inhibitor. An in vivo experiment proved that the miR-375 inhibitor upregulated the GPR39 expression and improved inflammation, oxidative stress, and endothelial cell damage associated with atherosclerosis.The miR-375 inhibitor improved inflammation, oxidative stress, and cell damage in ox-LDL-induced HAECs and HFD-induced ApoE-/- mice by promoting the GPR39 expression, which provided a new theoretical basis for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hui Luo
- Department of Cardiology, The First Hospital of Changsha
| | - Lin Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University
| | - Bo Dong
- Department of Cardiology, The First Hospital of Changsha
| | - Yanghong Liu
- Center for Reproductive Medicine, The Third Xiangya Hospital, Central South University
| |
Collapse
|
4
|
Nagesh PT, Nishi H, Rawal S, Zahr T, Miano JM, Sorci-Thomas M, Xu H, Akbar N, Choudhury RP, Misra A, Fisher EA. HDL regulates TGFß-receptor lipid raft partitioning, restoring contractile features of cholesterol-loaded vascular smooth muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562786. [PMID: 37905061 PMCID: PMC10614922 DOI: 10.1101/2023.10.19.562786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Cholesterol-loading of mouse aortic vascular smooth muscle cells (mVSMCs) downregulates miR-143/145, a master regulator of the contractile state downstream of TGFβ signaling. In vitro, this results in transitioning from a contractile mVSMC to a macrophage-like state. This process likely occurs in vivo based on studies in mouse and human atherosclerotic plaques. Objectives To test whether cholesterol-loading reduces VSMC TGFβ signaling and if cholesterol efflux will restore signaling and the contractile state in vitro and in vivo. Methods Human coronary artery (h)VSMCs were cholesterol-loaded, then treated with HDL (to promote cholesterol efflux). For in vivo studies, partial conditional deletion of Tgfβr2 in lineage-traced VSMC mice was induced. Mice wild-type for VSMC Tgfβr2 or partially deficient (Tgfβr2+/-) were made hypercholesterolemic to establish atherosclerosis. Mice were then treated with apoA1 (which forms HDL). Results Cholesterol-loading of hVSMCs downregulated TGFβ signaling and contractile gene expression; macrophage markers were induced. TGFβ signaling positively regulated miR-143/145 expression, increasing Acta2 expression and suppressing KLF4. Cholesterol-loading localized TGFβ receptors into lipid rafts, with consequent TGFβ signaling downregulation. Notably, in cholesterol-loaded hVSMCs HDL particles displaced receptors from lipid rafts and increased TGFβ signaling, resulting in enhanced miR-145 expression and decreased KLF4-dependent macrophage features. ApoA1 infusion into Tgfβr2+/- mice restored Acta2 expression and decreased macrophage-marker expression in plaque VSMCs, with evidence of increased TGFβ signaling. Conclusions Cholesterol suppresses TGFβ signaling and the contractile state in hVSMC through partitioning of TGFβ receptors into lipid rafts. These changes can be reversed by promotion of cholesterol efflux, consistent with evidence in vivo.
Collapse
Affiliation(s)
- Prashanth Thevkar Nagesh
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Hitoo Nishi
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Shruti Rawal
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Tarik Zahr
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Mary Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
5
|
Chin DD, Patel N, Lee W, Kanaya S, Cook J, Chung EJ. Long-term, in vivo therapeutic effects of a single dose of miR-145 micelles for atherosclerosis. Bioact Mater 2023; 27:327-336. [PMID: 37122900 PMCID: PMC10140752 DOI: 10.1016/j.bioactmat.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the build-up of lipid-rich plaques in the arterial walls. The standard treatment for patients with atherosclerosis is statin therapy aimed to lower serum lipid levels. Despite its widespread use, many patients taking statins continue to experience acute events. Thus, to develop improved and alternative therapies, we previously reported on microRNA-145 (miR-145 micelles) and its ability to inhibit atherosclerosis by targeting vascular smooth muscle cells (VSMCs). Importantly, one dose of miR-145 micelles significantly abrogated disease progression when evaluated two weeks post-administration. Thus, in this study, to evaluate how long the sustained effects of miR-145 micelles can be maintained and towards identifying a dosing regimen that is practical for patients with chronic disease, the therapeutic effects of a single dose of miR-145 micelles were evaluated for up to two months in vivo. After one and two months post-treatment, miR-145 micelles were found to reduce plaque size and overall lesion area compared to all other controls including statins without causing adverse effects. Furthermore, a single dose of miR-145 micelle treatment inhibited VSMC transdifferentiation into pathogenic macrophage-like and osteogenic cells in plaques. Together, our data shows the long-term efficacy and sustained effects of miR-145 micelles that is amenable using a dosing frequency relevant to chronic disease patients.
Collapse
Affiliation(s)
- Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Neil Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Woori Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Sonali Kanaya
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jackson Cook
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
6
|
microRNAs Associated with Carotid Plaque Development and Vulnerability: The Clinician's Perspective. Int J Mol Sci 2022; 23:ijms232415645. [PMID: 36555285 PMCID: PMC9779323 DOI: 10.3390/ijms232415645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke (IS) related to atherosclerosis of large arteries is one of the leading causes of mortality and disability in developed countries. Atherosclerotic internal carotid artery stenosis (ICAS) contributes to 20% of all cerebral ischemia cases. Nowadays, atherosclerosis prevention and treatment measures aim at controlling the atherosclerosis risk factors, or at the interventional (surgical or endovascular) management of mature occlusive lesions. There is a definite lack of the established circulating biomarkers which, once modulated, could prevent development of atherosclerosis, and consequently prevent the carotid-artery-related IS. Recent studies emphasize that microRNA (miRNA) are the emerging particles that could potentially play a pivotal role in this approach. There are some research studies on the association between the expression of small non-coding microRNAs with a carotid plaque development and vulnerability. However, the data remain inconsistent. In addition, all major studies on carotid atherosclerotic plaque were conducted on cell culture or animal models; very few were conducted on humans, whereas the accumulating evidence demonstrates that it cannot be automatically extrapolated to processes in humans. Therefore, this paper aims to review the current knowledge on how miRNA participate in the process of carotid plaque formation and rupture, as well as stroke occurrence. We discuss potential target miRNA that could be used as a prognostic or therapeutic tool.
Collapse
|
7
|
Kabłak-Ziembicka A, Badacz R, Przewłocki T. Clinical Application of Serum microRNAs in Atherosclerotic Coronary Artery Disease. J Clin Med 2022; 11:6849. [PMID: 36431326 PMCID: PMC9698927 DOI: 10.3390/jcm11226849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
MicroRNAs (miRs) are promising diagnostic, prognostic and therapeutic biomolecules for atherosclerotic cardiovascular disease. Atherosclerotic occlusive disease concerns a large population of patients, carrying the highest incidence of fatal and non-fatal adverse events, such as myocardial infarction, ischemic stroke, and limb ischemia, worldwide. Consistently, miRs are involved in regulation and pathogenesis of atherosclerotic coronary artery disease (CAD), acute coronary syndromes (ACS), both with ST-segment (STEMI) and non-ST segment elevation myocardial infarctions (NSTEMI), as well as cardiac remodeling and fibrosis following ACS. However, the genetic and molecular mechanisms underlying adverse outcomes in CAD are multifactorial, and sometimes difficult to interpret for clinicians. Therefore, in the present review paper we have focused on the clinical meaning and the interpretation of various miRs findings, and their potential application in routine clinical practice.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
- Noninvasive Cardiovascular Laboratory, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
- Department of Interventional Cardiology, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
| | - Tadeusz Przewłocki
- Department of Interventional Cardiology, The John Paul II Hospital, Prądnicka 80, 31-202 Kraków, Poland
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Jagiellonian University Medical College, św. Anny 12, 31-007 Kraków, Poland
| |
Collapse
|