1
|
Fujikawa K, Socorro M, Lukashova L, Hoskere P, Keskinidis P, Verdelis K, Napierala D. Deficiency of Trps1 in Cementoblasts Impairs Cementogenesis and Tooth Root Formation. Calcif Tissue Int 2024; 115:686-699. [PMID: 39177752 PMCID: PMC11531424 DOI: 10.1007/s00223-024-01277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Cementum is the least studied of all mineralized tissues and little is known about mechanisms regulating its formation. Therefore, the goal of this study was to provide new insights into the transcriptional regulation of cementum formation by determining the consequences of the deficiency of the Trps1 transcription factor in cementoblasts. We used Trps1Col1a1 cKO (2.3Co1a1-CreERT2;Trps1fl/fl) mice, in which Trps1 is deleted in cementoblasts. Micro-computed tomography analyses of molars of 4-week-old males and females demonstrated significantly shorter roots with thinner mineralized tissues (root dentin and cementum) in Trps1Col1a1 cKO compared to WT mice. Semi-quantitative histological analyses revealed a significantly reduced area of cellular cementum and localized deficiencies of acellular cementum in Trps1Col1a1 cKO mice. Immunohistochemical analyses revealed clustering of cementoblasts at the apex of roots, and intermittent absence of cementoblasts on Trps1Col1a1 cKO cementum surfaces. Fewer Osterix-positive cells adjacent to cellular cementum were also detected in Trps1Col1a1 cKO compared to WT mice. Decreased levels of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme required for proper cementogenesis, were apparent in cementum, periodontal ligament, and alveolar bone of Trps1Col1a1 cKO. There were no apparent differences in levels of bone sialoprotein (Bsp) in cementum. Quantitative analyses of picrosirius red-stained periodontal ligament revealed shorter and disorganized collagen fibers in Trps1Col1a1 cKO mice demonstrating impaired periodontal structure. In conclusion, this study has identified Trps1 transcription factor as one of the important regulators of cellular and acellular cementum formation. Furthermore, this study suggests that Trps1 supports the function of cementoblasts by upregulating expression of the major proteins required for cementogenesis, such as Osterix and TNAP.
Collapse
Affiliation(s)
- Kaoru Fujikawa
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Mairobys Socorro
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Lyudmila Lukashova
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Priyanka Hoskere
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Paulina Keskinidis
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, Department of Endodontics, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA
| | - Dobrawa Napierala
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, 501 Salk Pavilion, 335 Sutherland Drive, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
2
|
Wang S, Yang B, Mu H, Dong W, Yang B, Wang X, Yu W, Dong Z, Wang J. PTX3 promotes cementum formation and cementoblast differentiation via HA/ITGB1/FAK/YAP1 signaling pathway. Bone 2024; 187:117199. [PMID: 38992453 DOI: 10.1016/j.bone.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Baochen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
3
|
Easter QT, Fernandes Matuck B, Beldorati Stark G, Worth CL, Predeus AV, Fremin B, Huynh K, Ranganathan V, Ren Z, Pereira D, Rupp BT, Weaver T, Miller K, Perez P, Hasuike A, Chen Z, Bush M, Qu X, Lee J, Randell SH, Wallet SM, Sequeira I, Koo H, Tyc KM, Liu J, Ko KI, Teichmann SA, Byrd KM. Single-cell and spatially resolved interactomics of tooth-associated keratinocytes in periodontitis. Nat Commun 2024; 15:5016. [PMID: 38876998 PMCID: PMC11178863 DOI: 10.1038/s41467-024-49037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
Periodontitis affects billions of people worldwide. To address relationships of periodontal niche cell types and microbes in periodontitis, we generated an integrated single-cell RNA sequencing (scRNAseq) atlas of human periodontium (34-sample, 105918-cell), including sulcular and junctional keratinocytes (SK/JKs). SK/JKs displayed altered differentiation states and were enriched for effector cytokines in periodontitis. Single-cell metagenomics revealed 37 bacterial species with cell-specific tropism. Fluorescence in situ hybridization detected intracellular 16 S and mRNA signals of multiple species and correlated with SK/JK proinflammatory phenotypes in situ. Cell-cell communication analysis predicted keratinocyte-specific innate and adaptive immune interactions. Highly multiplexed immunofluorescence (33-antibody) revealed peri-epithelial immune foci, with innate cells often spatially constrained around JKs. Spatial phenotyping revealed immunosuppressed JK-microniches and SK-localized tertiary lymphoid structures in periodontitis. Here, we demonstrate impacts on and predicted interactomics of SK and JK cells in health and periodontitis, which requires further investigation to support precision periodontal interventions in states of chronic inflammation.
Collapse
Affiliation(s)
- Quinn T Easter
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Bruno Fernandes Matuck
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | | | | | | | | | - Khoa Huynh
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Zhi Ren
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Pereira
- Center for Oral Immunobiology and Regenerative Medicine, Barts Centre for Squamous Cancer, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brittany T Rupp
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Theresa Weaver
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
| | | | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Akira Hasuike
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Zhaoxu Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mandy Bush
- Respiratory TRACTS Core, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xufeng Qu
- VCU Massey Comprehensive Cancer Center, Bioinformatics Shared Resource Core, Virginia Commonwealth University, Richmond, VA, USA
| | - Janice Lee
- Craniofacial Anomalies & Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon M Wallet
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Inês Sequeira
- Center for Oral Immunobiology and Regenerative Medicine, Barts Centre for Squamous Cancer, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hyun Koo
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katarzyna M Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
- VCU Massey Comprehensive Cancer Center, Bioinformatics Shared Resource Core, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
- VCU Massey Comprehensive Cancer Center, Bioinformatics Shared Resource Core, Virginia Commonwealth University, Richmond, VA, USA
| | - Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Physics, Cavendish Laboratory, Cambridge, UK
| | - Kevin M Byrd
- Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA Science & Research Institute, Gaithersburg, MD, USA.
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Tsutsumi-Arai C, Arai Y, Tran A, Salinas M, Nakai Y, Orikasa S, Ono W, Ono N. A PTHrP Gradient Drives Mandibular Condylar Chondrogenesis via Runx2. J Dent Res 2024; 103:91-100. [PMID: 38058151 PMCID: PMC10734211 DOI: 10.1177/00220345231208175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
The mandibular condylar cartilage (MCC) is an essential component of the temporomandibular joint, which orchestrates the vertical growth of the mandibular ramus through endochondral ossification with distinctive modes of cell differentiation. Parathyroid hormone-related protein (PTHrP) is a master regulator of chondrogenesis; in the long bone epiphyseal growth plate, PTHrP expressed by resting zone chondrocytes promotes chondrocyte proliferation in the adjacent layer. However, how PTHrP regulates chondrogenesis in the MCC remains largely unclear. In this study, we used a Pthrp-mCherry knock-in reporter strain to map the localization of PTHrP+ cells in the MCC and define the function of PTHrP in the growing mandibular condyle. In the postnatal MCC of PthrpmCherry/+ mice, PTHrP-mCherry was specifically expressed by cells in the superficial layer immediately adjacent to RUNX2-expressing cells in the polymorphic layer. PTHrP ligands diffused across the polymorphic and chondrocyte layers where its cognate receptor PTH1R was abundantly expressed. We further analyzed the mandibular condyle of PthrpmCherry/mCherry mice lacking functional PTHrP protein (PTHrP-KO). At embryonic day (E) 18.5, the condylar process and MCC were significantly truncated in the PTHrP-KO mandible, which was associated with a significant reduction in cell proliferation across the polymorphic layer and a loss of SOX9+ cells in the chondrocyte layers. The PTHrP-KO MCC showed a transient increase in the number of Col10a1+ hypertrophic chondrocytes at E15.5, followed by a significant loss of these cells at E18.5, indicating that superficial layer-derived PTHrP prevents premature chondrocyte exhaustion in the MCC. The expression of Runx2, but not Sp7, was significantly reduced in the polymorphic layer of the PTHrP-KO MCC. Therefore, PTHrP released from cells in the superficial layer directly acts on cells in the polymorphic layer to promote proliferation of chondrocyte precursor cells and prevent their premature differentiation by maintaining Runx2 expression, revealing a unique PTHrP gradient-directed mechanism that regulates MCC chondrogenesis.
Collapse
Affiliation(s)
- C. Tsutsumi-Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Y. Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - A. Tran
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - M. Salinas
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Y. Nakai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - S. Orikasa
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - W. Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - N. Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
5
|
Arai Y, English JD, Ono N, Ono W. Effects of antiresorptive medications on tooth root formation and tooth eruption in paediatric patients. Orthod Craniofac Res 2023; 26 Suppl 1:29-38. [PMID: 36714970 PMCID: PMC10864015 DOI: 10.1111/ocr.12637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Tooth eruption is a pivotal milestone for children's growth and development. This process involves with the formation of the tooth root, the periodontal ligament (PDL) and the alveolar bone, as the tooth crown penetrates the bone and gingiva to enter the oral cavity. This review aims to outline current knowledge of the adverse dental effects of antiresorptive medications. Recently, paediatric indications for antiresorptive medications, such as bisphosphonates (BPs), have emerged, and these agents are increasingly used in children and adolescents to cure pathological bone resorption associated with bone diseases and cancers. Since tooth eruption is accompanied by osteoclastic bone resorption, it is expected that the administration of antiresorptive medications during this period affects tooth development. Indeed, several articles studying human patient cohorts and animal models report the dental defects associated with the use of these antiresorptive medications. This review shows the summary of the possible factors related to tooth eruption and introduces the future research direction to understand the mechanisms underlying the dental defects caused by antiresorptive medications.
Collapse
Affiliation(s)
- Yuki Arai
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
6
|
Zhang D, Lin W, Jiang S, Deng P, Liu L, Wang Q, Sheng R, Shu HS, Wang L, Zou W, Zhou BO, Jing J, Ye L, Yu B, Zhang S, Yuan Q. Lepr-Expressing PDLSCs Contribute to Periodontal Homeostasis and Respond to Mechanical Force by Piezo1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303291. [PMID: 37553778 PMCID: PMC10582421 DOI: 10.1002/advs.202303291] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Periodontium supports teeth in a mechanically stimulated tissue environment, where heterogenous stem/progenitor populations contribute to periodontal homeostasis. In this study, Leptin receptor+ (Lepr+) cells are identified as a distinct periodontal ligament stem cell (PDLSC) population by single-cell RNA sequencing and lineage tracing. These Lepr+ PDLSCs are located in the peri-vascular niche, possessing multilineage potential and contributing to tissue repair in response to injury. Ablation of Lepr+ PDLSCs disrupts periodontal homeostasis. Hyper-loading and unloading of occlusal forces modulate Lepr+ PDLSCs activation. Piezo1 is demonstrated that mediates the mechanosensing of Lepr+ PDLSCs by conditional Piezo1-deficient mice. Meanwhile, Yoda1, a selective activator of Piezo1, significantly accelerates periodontal tissue growth via the induction of Lepr+ cells. In summary, Lepr marks a unique multipotent PDLSC population in vivo, to contribute toward periodontal homeostasis via Piezo1-mediated mechanosensing.
Collapse
Affiliation(s)
- Danting Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Peng Deng
- Division of Oral and Systemic Health SciencesSchool of DentistryUniversity of California Los AngelesLos AngelesCA90095USA
| | - Linfeng Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Hui Sophie Shu
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Lijun Wang
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Weiguo Zou
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Bo O. Zhou
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Experimental HematologyInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical SciencesTianjin300020China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of EndodonticsWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Bo Yu
- Division of Preventive and Restorative SciencesSchool of DentistryUniversity of California Los AngelesLos AngelesCA90095USA
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of Oral ImplantologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of Oral ImplantologyWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
7
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Fragoulis A, Tohidnezhad M, Kubo Y, Wruck CJ, Craveiro RB, Bock A, Wolf M, Pufe T, Jahr H, Suhr F. The Contribution of the Nrf2/ARE System to Mechanotransduction in Musculoskeletal and Periodontal Tissues. Int J Mol Sci 2023; 24:ijms24097722. [PMID: 37175428 PMCID: PMC10177782 DOI: 10.3390/ijms24097722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Frank Suhr
- Division of Molecular Exercise Physiology, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
| |
Collapse
|
9
|
Deng Y, Luo N, Xie M, He L, Jiang R, Hu N, Wen J, Jiang X. Transcriptome landscape comparison of periodontium in developmental and renewal stages. Front Endocrinol (Lausanne) 2023; 14:1154931. [PMID: 37008900 PMCID: PMC10050752 DOI: 10.3389/fendo.2023.1154931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVES Periodontium regeneration remains a significant challenge in clinics and research, and it is essential to understand the stage-specific biological process in situ. However, differing findings have been reported, and the mechanism has yet to be elucidated. The periodontium of adult mice molars is considered to be stable remodeling tissue. At the same time, the continuously growing incisors and the developing dental follicle (DF) of postnatal mice highly represent fast remodeling tissue. In this study, we attempted to explore different clues of temporal and spatial comparisons to provide improved references for periodontal regeneration. METHODS Periodontal tissues from the developing periodontium (DeP) of postnatal mice, and continuously growing periodontium (CgP) and stable remodeling periodontium (ReP) of adult mice were isolated and compared using RNA sequencing. Based on the Dep and CgP separately compared with the ReP, differentially expressed genes and signaling pathways were analyzed using GO, KEGG databases, and Ingenuity Pathway Analysis (IPA). The results and validation were obtained by immunofluorescence staining and RT-PCR assays. Data were expressed as means ± standard deviation (SD) and analyzed by GraphPad Prism 8 software package, and one-way ANOVA was used to test multiple groups. RESULTS Principal component analysis showed that the three groups of periodontal tissue were successfully isolated and had distinct expression profiles. A total of 792 and 612 DEGs were identified in the DeP and CgP groups compared with the ReP. Upregulated DEGs in the DeP were closely related to developmental processes, while the CgP showed significantly enhanced cellular energy metabolism. The DeP and CgP showed a common downregulation of the immune response, with activation, migration, and recruitment of immune cells. IPA and further validation jointly suggested that the MyD88/p38 MAPK pathway played an essential regulatory role in periodontium remodeling. CONCLUSION Tissue development, energy metabolism, and immune response were critical regulatory processes during periodontal remodeling. Developmental and adult stages of periodontal remodeling showed different expression patterns. These results contribute to a deeper understanding of periodontal development and remodeling and may provide references for periodontal regeneration.
Collapse
Affiliation(s)
- Yuwei Deng
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Luo
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Xie
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ruixue Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Hu
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endodontics, Ninth People’ Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| | - Xinquan Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| |
Collapse
|
10
|
Hermans F, Bueds C, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Establishment of inclusive single-cell transcriptome atlases from mouse and human tooth as powerful resource for dental research. Front Cell Dev Biol 2022; 10:1021459. [PMID: 36299483 PMCID: PMC9590651 DOI: 10.3389/fcell.2022.1021459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell (sc) omics has become a powerful tool to unravel a tissue's cell landscape across health and disease. In recent years, sc transcriptomic interrogation has been applied to a variety of tooth tissues of both human and mouse, which has considerably advanced our fundamental understanding of tooth biology. Now, an overarching and integrated bird's-view of the human and mouse tooth sc transcriptomic landscape would be a powerful multi-faceted tool for dental research, enabling further decipherment of tooth biology and development through constantly progressing state-of-the-art bioinformatic methods as well as the exploration of novel hypothesis-driven research. To this aim, we re-assessed and integrated recently published scRNA-sequencing datasets of different dental tissue types (healthy and diseased) from human and mouse to establish inclusive tooth sc atlases, and applied the consolidated data map to explore its power. For mouse tooth, we identified novel candidate transcriptional regulators of the ameloblast lineage. Regarding human tooth, we provide support for a developmental connection, not advanced before, between specific epithelial compartments. Taken together, we established inclusive mouse and human tooth sc atlases as powerful tools to potentiate innovative research into tooth biology, development and disease. The maps are provided online in an accessible format for interactive exploration.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Annelies Bronckaers
- UHasselt-Hasselt University, Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
11
|
Iwayama T, Iwashita M, Miyashita K, Sakashita H, Matsumoto S, Tomita K, Bhongsatiern P, Kitayama T, Ikegami K, Shimbo T, Tamai K, Murayama MA, Ogawa S, Iwakura Y, Yamada S, Olson LE, Takedachi M, Murakami S. Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament. Development 2022; 149:277273. [DOI: 10.1242/dev.201203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023]
Abstract
ABSTRACT
Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1−Ibsp+Sparcl1+ and Plap-1−Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Mizuho Iwashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | | | - Hiromi Sakashita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
| | - Shuji Matsumoto
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Kiwako Tomita
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Phan Bhongsatiern
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Tomomi Kitayama
- StemRIM Inc. 2 , Ibaraki, Osaka 567-0085 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | | | - Takashi Shimbo
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University 3 , Suita 565-0871 , Japan
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Katsuto Tamai
- Osaka University Graduate School of Medicine 4 Department of Stem Cell Therapy Science , , Osaka 565-0871 , Japan
| | - Masanori A. Murayama
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Shuhei Ogawa
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science 5 , Noda, Chiba 278-8510 , Japan
| | - Satoru Yamada
- Tohoku University Graduate School of Dentistry 6 Department of Periodontology and Endodontology , , Sendai, Miyagi 980-8575 , Japan
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation 7 , Oklahoma City, OK 73104 , USA
| | - Masahide Takedachi
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| | - Shinya Murakami
- Osaka University Graduate School of Dentistry 1 Department of Periodontology , , Suita, Osaka 565-0871 , Japan
| |
Collapse
|
12
|
Abstract
Oral and craniofacial tissues are uniquely adapted for continuous and intricate functioning, including breathing, feeding, and communication. To achieve these vital processes, this complex is supported by incredible tissue diversity, variously composed of epithelia, vessels, cartilage, bone, teeth, ligaments, and muscles, as well as mesenchymal, adipose, and peripheral nervous tissue. Recent single cell and spatial multiomics assays-specifically, genomics, epigenomics, transcriptomics, proteomics, and metabolomics-have annotated known and new cell types and cell states in human tissues and animal models, but these concepts remain limitedly explored in the human postnatal oral and craniofacial complex. Here, we highlight the collaborative and coordinated efforts of the newly established Oral and Craniofacial Bionetwork as part of the Human Cell Atlas, which aims to leverage single cell and spatial multiomics approaches to first understand the cellular and molecular makeup of human oral and craniofacial tissues in health and to then address common and rare diseases. These powerful assays have already revealed the cell types that support oral tissues, and they will unravel cell types and molecular networks utilized across development, maintenance, and aging as well as those affected in diseases of the craniofacial complex. This level of integration and cell annotation with partner laboratories across the globe will be critical for understanding how multiple variables, such as age, sex, race, and ancestry, influence these oral and craniofacial niches. Here, we 1) highlight these recent collaborative efforts to employ new single cell and spatial approaches to resolve our collective biology at a higher resolution in health and disease, 2) discuss the vision behind the Oral and Craniofacial Bionetwork, 3) outline the stakeholders who contribute to and will benefit from this network, and 4) outline directions for creating the first Human Oral and Craniofacial Cell Atlas.
Collapse
Affiliation(s)
- A J Caetano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - I Sequeira
- Institute of Dentistry, Barts Centre for Squamous Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - K M Byrd
- Lab of Oral and Craniofacial Innovation, Department of Innovation and Technology Research, ADA Science and Research Institute, Gaithersburg, MD, USA
| |
Collapse
|
13
|
[68Ga]Ga-Pentixafor and Sodium [18F]Fluoride PET Can Non-Invasively Identify and Monitor the Dynamics of Orthodontic Tooth Movement in Mouse Model. Cells 2022; 11:cells11192949. [PMID: 36230911 PMCID: PMC9562206 DOI: 10.3390/cells11192949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/02/2022] Open
Abstract
The cellular and molecular mechanisms of orthodontic tooth movement (OTM) are not yet fully understood, partly due to the lack of dynamical datasets within the same subject. Inflammation and calcification are two main processes during OTM. Given the high sensitivity and specificity of [68Ga]Ga-Pentixafor and Sodium [18F]Fluoride (Na[18F]F) for inflammation and calcification, respectively, the aim of this study is to assess their ability to identify and monitor the dynamics of OTM in an established mouse model. To monitor the processes during OTM in real time, animals were scanned using a small animal PET/CT during week 1, 3, and 5 post-implantation, with [68Ga]Ga-Pentixafor and Na[18F]F. Both tracers showed an increased uptake in the region of interest compared to the control. For [68Ga]Ga-Pentixafor, an increased uptake was observed within the 5-week trial, suggesting the continuous presence of inflammatory markers. Na[18F]F showed an increased uptake during the trial, indicating an intensification of bone remodelling. Interim and end-of-experiment histological assessments visualised increased amounts of chemokine receptor CXCR4 and TRAP-positive cells in the periodontal ligament on the compression side. This approach establishes the first in vivo model for periodontal remodelling during OTM, which efficiently detects and monitors the intricate dynamics of periodontal ligament.
Collapse
|
14
|
Nagata M, English JD, Ono N, Ono W. Diverse stem cells for periodontal tissue formation and regeneration. Genesis 2022; 60:e23495. [PMID: 35916433 PMCID: PMC9492631 DOI: 10.1002/dvg.23495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022]
Abstract
The periodontium is comprised of multiple units of mineralized and nonmineralized tissues including the cementum on the root surface, the alveolar bone, periodontal ligament (PDL), and the gingiva. PDL contains a variety of cell populations including mesenchymal stem/progenitor cells (MSCs) termed PDLSCs, which contribute to periodontal regeneration. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitors in their native environment, particularly regarding how they contribute to homeostasis and repair of the periodontium. The current concept is that mesenchymal progenitors in the PDL are localized to the perivascular niche. Single-cell RNA sequencing (scRNA-seq) analyses reveal heterogeneity and cell-type specific markers of cells in the periodontium, as well as their developmental relationship with precursor cells in the dental follicle. The characteristics of PDLSCs and their diversity in vivo are now beginning to be unraveled thanks to insights from mouse genetic models and scRNA-seq analyses, which aid to uncover the fundamental properties of stem cells in the human PDL. The new knowledge will be highly important for developing more effective stem cell-based regenerative therapies to repair periodontal tissues in the future.
Collapse
Affiliation(s)
- Mizuki Nagata
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic & Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
15
|
Zhang X, Caetano AJ, Sharpe PT, Volponi AA. Oral stem cells, decoding and mapping the resident cells populations. BIOMATERIALS TRANSLATIONAL 2022; 3:24-30. [PMID: 35837342 PMCID: PMC9255788 DOI: 10.12336/biomatertransl.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
The teeth and their supporting tissues provide an easily accessible source of oral stem cells. These different stem cell populations have been extensively studied for their properties, such as high plasticity and clonogenicity, expressing stem cell markers and potency for multilineage differentiation in vitro. Such cells with stem cell properties have been derived and characterised from the dental pulp tissue, the apical papilla region of roots in development, as well as the supporting tissue of periodontal ligament that anchors the tooth within the alveolar socket and the soft gingival tissue. Studying the dental pulp stem cell populations in a continuously growing mouse incisor model, as a traceable in vivo model, enables the researchers to study the properties, origin and behaviour of mesenchymal stem cells. On the other side, the oral mucosa with its remarkable scarless wound healing phenotype, offers a model to study a well-coordinated system of healing because of coordinated actions between epithelial, mesenchymal and immune cells populations. Although described as homogeneous cell populations following their in vitro expansion, the increasing application of approaches that allow tracing of individual cells over time, along with single-cell RNA-sequencing, reveal that different oral stem cells are indeed diverse populations and there is a highly organised map of cell populations according to their location in resident tissues, elucidating diverse stem cell niches within the oral tissues. This review covers the current knowledge of diverse oral stem cells, focusing on the new approaches in studying these cells. These approaches "decode" and "map" the resident cells populations of diverse oral tissues and contribute to a better understanding of the "stem cells niche architecture and interactions. Considering the high accessibility and simplicity in obtaining these diverse stem cells, the new findings offer potential in development of translational tissue engineering approaches and innovative therapeutic solutions.
Collapse
Affiliation(s)
- Xuechen Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK
| | - Ana Justo Caetano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK
| | - Paul T. Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK,Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, CAS, v.v.i., Brno, Czech Republic,Corresponding authors: Ana Angelova Volponi, ; Paul T. Sharpe,
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK,Corresponding authors: Ana Angelova Volponi, ; Paul T. Sharpe,
| |
Collapse
|
16
|
Fujihara C, Nantakeeratipat T, Murakami S. Energy Metabolism in Osteogenic Differentiation and Reprogramming: A Possible Future Strategy for Periodontal Regeneration. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Energy metabolism is crucial in stem cells as they harbor various metabolic pathways depending on their developmental stages. Moreover, understanding the control of their self-renewal or differentiation via manipulation of their metabolic state may yield novel regenerative therapies. Periodontal ligament (PDL) cells existing between the tooth and alveolar bone are crucial for maintaining homeostasis in the periodontal tissue. In addition, they play a pivotal role in periodontal regeneration, as they possess the properties of mesenchymal stem cells and are capable of differentiating into osteogenic cells. Despite these abilities, the treatment outcome of periodontal regenerative therapy remains unpredictable because the biological aspects of PDL cells and the mechanisms of their differentiation remain unclear. Recent studies have revealed that metabolism and factors affecting metabolic pathways are involved in the differentiation of PDL cells. Furthermore, understanding the metabolic profile of PDL cells could be crucial in manipulating the differentiation of PDL cells. In this review, first, we discuss the energy metabolism in osteoblasts and stem cells to understand the metabolism of PDL cells. Next, we summarize the metabolic preferences of PDL cells during their maintenance and cytodifferentiation. The perspectives discussed have potential applicability for creating a platform for reliable regenerative therapies for periodontal tissue.
Collapse
|