1
|
Lee CY, Hubrich D, Varga JK, Schäfer C, Welzel M, Schumbera E, Djokic M, Strom JM, Schönfeld J, Geist JL, Polat F, Gibson TJ, Keller Valsecchi CI, Kumar M, Schueler-Furman O, Luck K. Systematic discovery of protein interaction interfaces using AlphaFold and experimental validation. Mol Syst Biol 2024; 20:75-97. [PMID: 38225382 PMCID: PMC10883280 DOI: 10.1038/s44320-023-00005-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Structural resolution of protein interactions enables mechanistic and functional studies as well as interpretation of disease variants. However, structural data is still missing for most protein interactions because we lack computational and experimental tools at scale. This is particularly true for interactions mediated by short linear motifs occurring in disordered regions of proteins. We find that AlphaFold-Multimer predicts with high sensitivity but limited specificity structures of domain-motif interactions when using small protein fragments as input. Sensitivity decreased substantially when using long protein fragments or full length proteins. We delineated a protein fragmentation strategy particularly suited for the prediction of domain-motif interfaces and applied it to interactions between human proteins associated with neurodevelopmental disorders. This enabled the prediction of highly confident and likely disease-related novel interfaces, which we further experimentally corroborated for FBXO23-STX1B, STX1B-VAMP2, ESRRG-PSMC5, PEX3-PEX19, PEX3-PEX16, and SNRPB-GIGYF1 providing novel molecular insights for diverse biological processes. Our work highlights exciting perspectives, but also reveals clear limitations and the need for future developments to maximize the power of Alphafold-Multimer for interface predictions.
Collapse
Affiliation(s)
- Chop Yan Lee
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Dalmira Hubrich
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Julia K Varga
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | | | - Mareen Welzel
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Eric Schumbera
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
- Computational Biology and Data Mining Group Biozentrum I, 55128, Mainz, Germany
| | - Milena Djokic
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Joelle M Strom
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Jonas Schönfeld
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Johanna L Geist
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Feyza Polat
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | | | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel.
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128, Mainz, Germany.
| |
Collapse
|
2
|
Functional approaches to the study of G-protein-coupled receptors in postmortem brain tissue: [ 35S]GTPγS binding assays combined with immunoprecipitation. Pharmacol Rep 2021; 73:1079-1095. [PMID: 33876404 DOI: 10.1007/s43440-021-00253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) have an enormous biochemical importance as they bind to diverse extracellular ligands and regulate a variety of physiological and pathological responses. G-protein activation measures the functional consequence of receptor occupancy at one of the earliest receptor-mediated events. Receptor coupling to G-proteins promotes the GDP/GTP exchange on Gα subunits. Thus, modulation of the binding of the poorly hydrolysable GTP analog [35S]GTPγS to the Gα-protein subunit can be used as a functional approach to quantify GPCR interaction with agonist, antagonist or inverse agonist drugs. In order to determine receptor-mediated selective activation of the different Gα-proteins, [35S]GTPγS binding assays combined with immunodetection by specific antibodies have been developed and applied to physiological and pathological brain conditions. Currently, immunoprecipitation with magnetic beads and scintillation proximity assays are the most habitual techniques for this purpose. The present review summarizes the different procedures, advantages and limitations of the [35S]GTPγS binding assays combined with selective Gα-protein sequestration methods. Experience of functional coupling of several GPCRs to different Gα-proteins and recommendations for optimal performance in brain membranes are described. One of the biggest opportunities opened by these techniques is that they enable evaluation of biased agonism in the native tissue, which results in high interest in drug discovery. The available results derived from application of these functional methodologies to study GPCR dysfunctions in neuro-psychiatric disorders are also described. In conclusion, [35S]GTPγS binding combined with antibody-mediated immunodetection represents an useful method to separately evaluate the functional activity of drugs acting on GPCRs over each Gα-protein subtype.
Collapse
|
3
|
Ke R, Lok SIS, Singh K, Chow BKC, Janovjak H, Lee LTO. Formation of Kiss1R/GPER Heterocomplexes Negatively Regulates Kiss1R-mediated Signalling through Limiting Receptor Cell Surface Expression. J Mol Biol 2021; 433:166843. [PMID: 33539880 DOI: 10.1016/j.jmb.2021.166843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Kisspeptin receptor (Kiss1R) is an important receptor that plays central regulatory roles in reproduction by regulating hormone release in the hypothalamus. We hypothesize that the formation of heterocomplexes between Kiss1R and other hypothalamus G protein-coupled receptors (GPCRs) affects their cellular signaling. Through screening of potential interactions between Kiss1R and hypothalamus GPCRs, we identified G protein-coupled estrogen receptor (GPER) as one interaction partner of Kiss1R. Based on the recognised function of kisspeptin and estrogen in regulating the reproductive system, we investigated the Kiss1R/GPER heterocomplex in more detail and revealed that complex formation significantly reduced Kiss1R-mediated signaling. GPER did not directly antagonize Kiss1R conformational changes upon ligand binding, but it rather reduced the cell surface expression of Kiss1R. These results therefore demonstrate a regulatory mechanism of hypothalamic hormone receptors via receptor cooperation in the reproductive system and modulation of receptor sensitivity.
Collapse
Affiliation(s)
- Ran Ke
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Samson Ian Sam Lok
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Billy Kwok Chong Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Harald Janovjak
- EMBL Australia, Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, Australia
| | - Leo Tsz On Lee
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau; Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
4
|
Endo M, Ozawa T. Advanced Bioluminescence System for In Vivo Imaging with Brighter and Red-Shifted Light Emission. Int J Mol Sci 2020; 21:E6538. [PMID: 32906768 PMCID: PMC7555964 DOI: 10.3390/ijms21186538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
In vivo bioluminescence imaging (BLI), which is based on luminescence emitted by the luciferase-luciferin reaction, has enabled continuous monitoring of various biochemical processes in living animals. Bright luminescence with a high signal-to-background ratio, ideally red or near-infrared light as the emission maximum, is necessary for in vivo animal experiments. Various attempts have been undertaken to achieve this goal, including genetic engineering of luciferase, chemical modulation of luciferin, and utilization of bioluminescence resonance energy transfer (BRET). In this review, we overview a recent advance in the development of a bioluminescence system for in vivo BLI. We also specifically examine the improvement in bioluminescence intensity by mutagenic or chemical modulation on several beetle and marine luciferase bioluminescence systems. We further describe that intramolecular BRET enhances luminescence emission, with recent attempts for the development of red-shifted bioluminescence system, showing great potency in in vivo BLI. Perspectives for future improvement of bioluminescence systems are discussed.
Collapse
Affiliation(s)
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| |
Collapse
|
5
|
Hoare BL, Kocan M, Bruell S, Scott DJ, Bathgate RAD. Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis. Pharmacol Res Perspect 2019; 7:e00513. [PMID: 31384473 PMCID: PMC6667744 DOI: 10.1002/prp2.513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
Relaxin family peptide 1 (RXFP1) is the receptor for relaxin a peptide hormone with important therapeutic potential. Like many G protein-coupled receptors (GPCRs), RXFP1 has been reported to form homodimers. Given the complex activation mechanism of RXFP1 by relaxin, we wondered whether homodimerization may be explicitly required for receptor activation, and therefore sought to determine if there is any relaxin-dependent change in RXFP1 proximity at the cell surface. Bioluminescence resonance energy transfer (BRET) between recombinantly tagged receptors is often used in GPCR proximity studies. RXFP1 targets poorly to the cell surface when overexpressed in cell lines, with the majority of the receptor proteins sequestered within the cell. Thus, any relaxin-induced changes in RXFP1 proximity at the cell surface may be obscured by BRET signal originating from intracellular compartments. We therefore, utilized the newly developed split luciferase system called HiBiT to specifically label the extracellular terminus of cell surface RXFP1 receptors in combination with mCitrine-tagged receptors, using the GABAB heterodimer as a positive control. This demonstrated that the BRET signal detected from RXFP1-RXFP1 proximity at the cell surface does not appear to be due to stable physical interactions. The fact that there is also no relaxin-mediated change in RXFP1-RXFP1 proximity at the cell surface further supports these conclusions. This work provides a basis by which cell surface GPCR proximity and expression levels can be specifically studied using a facile and homogeneous labeling technique such as HiBiT.
Collapse
Affiliation(s)
- Bradley L. Hoare
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Shoni Bruell
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Daniel J. Scott
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Ross A. D. Bathgate
- Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Susec M, Sencanski M, Glisic S, Veljkovic N, Pedersen C, Drinovec L, Stojan J, Nøhr J, Vrecl M. Functional characterization of β 2-adrenergic and insulin receptor heteromers. Neuropharmacology 2019; 152:78-89. [PMID: 30707913 DOI: 10.1016/j.neuropharm.2019.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/01/2019] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
This study aimed to functionally characterize β2-adrenergic (β2AR) and insulin receptor (IR) heteromers in regard to β-arrestin 2 (βarr2) recruitment and cAMP signaling and to examine the involvement of the cytoplasmic portion of the IR β chain in heteromerization with β2AR. Evidence for β2AR:IR:βarr2 complex formation and the specificity of the IR:βarr2 interaction was first provided by bioinfomatics analysis. Receptor-heteromer investigation technology (HIT) then provided functional evidence of β2AR:IR heterodimerization by showing isoproterenol-induced but not insulin-induced GFP2-βarr2 recruitment to the β2AR:IR complex; the IR:βarr2 interaction was found to only be constitutive. The constitutive IR:βarr2 BRET signal (BRETconst) was significantly smaller in cells coexpressing IR-RLuc8 and a GFP2-βarr2 1-185 mutant lacking the proposed IR binding domain. β2AR:IR heteromerization also influenced the pharmacological phenotype of β2AR, i.e., its efficacy in recruiting βarr2 and activating cAMP signaling. Evidence suggesting involvement of the cytoplasmic portion of the IR β chain in the interaction with β2AR was provided by BRET2 saturation and HIT assays using an IR 1-1271 stop mutant lacking the IR C-terminal tail region. For the complex consisting of IR 1-1271-RLuc8:β2AR-GFP2, saturation was not reached, most likely reflecting random collisions between IR 1-1271 and β2AR. Furthermore, in the HIT assay, no substantial agonist-induced increase in the BRET2 signal was detected that would be indicative of βarr2 recruitment to the IR 1-1271:β2AR heteromer. Complementary 3D visualization of β2AR:IR provided supporting evidence for stability of the heterotetramer complex and identified amino acid residues involved in β2AR:IR heteromerization. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Maja Susec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Slovenia
| | - Milan Sencanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Nevena Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Belgrade, Serbia
| | - Christina Pedersen
- Department of Incretin & Islet Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Luka Drinovec
- Department of Condensed Matter Physics, Jožef Stefan Institute, Slovenia
| | - Jurij Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jane Nøhr
- Department of Incretin & Islet Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
7
|
Guder P, Lotz-Havla AS, Woidy M, Reiß DD, Danecka MK, Schatz UA, Becker M, Ensenauer R, Pagel P, Büttner L, Muntau AC, Gersting SW. Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:518-531. [PMID: 30366024 DOI: 10.1016/j.bbamcr.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Peroxisomal biogenesis factor PEX26 is a membrane anchor for the multi-subunit PEX1-PEX6 protein complex that controls ubiquitination and dislocation of PEX5 cargo receptors for peroxisomal matrix protein import. PEX26 associates with the peroxisomal translocation pore via PEX14 and a splice variant (PEX26Δex5) of unknown function has been reported. Here, we demonstrate PEX26 homooligomerization mediated by two heptad repeat domains adjacent to the transmembrane domain. We show that isoform-specific domain organization determines PEX26 oligomerization and impacts peroxisomal β-oxidation and proliferation. PEX26 and PEX26Δex5 displayed different patterns of interaction with PEX2-PEX10 or PEX13-PEX14 complexes, which relate to distinct pre-peroxisomes in the de novo synthesis pathway. Our data support an alternative PEX14-dependent mechanism of peroxisomal membrane association for the splice variant, which lacks a transmembrane domain. Structure-function relationships of PEX26 isoforms explain an extended function in peroxisomal homeostasis and these findings may improve our understanding of the broad phenotype of PEX26-associated human disorders.
Collapse
Affiliation(s)
- Philipp Guder
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dunja D Reiß
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marta K Danecka
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ulrich A Schatz
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Marc Becker
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Labor Becker Olgemöller und Kollegen, 81671 Munich, Germany
| | - Regina Ensenauer
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Pagel
- Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität, 85350 Freising, Germany; numares GmbH, Josef-Engert-Str. 9, 93053 Regensburg, Germany
| | - Lars Büttner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Ania C Muntau
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
8
|
Wild-type p53 oligomerizes more efficiently than p53 hot-spot mutants and overcomes mutant p53 gain-of-function via a "dominant-positive" mechanism. Oncotarget 2018; 9:32063-32080. [PMID: 30174797 PMCID: PMC6112834 DOI: 10.18632/oncotarget.25944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Human p53 protein acts as a transcription factor predominantly in a tetrameric form. Single residue changes, caused by hot-spot mutations of the TP53 gene in human cancer, transform wild-type (wt) p53 tumor suppressor proteins into potent oncoproteins - with gain-of-function, tumor-promoting activity. Oligomerization of p53 allows for a direct interplay between wt and mutant p53 proteins if both are present in the same cells - where a mutant p53's dominant-negative effect known to inactivate wt p53, co-exists with an opposite mechanism - a "dominant-positive" suppression of the mutant p53's gain-of-function activity by wt p53. In this study we determine the oligomerization efficiency of wt and mutant p53 in living cells using FRET-based assays and describe wt p53 to be more efficient than mutant p53 in entering p53 oligomers. The biased p53 oligomerization helps to interpret earlier reports of a low efficiency of the wt p53 inactivation via the dominant-negative effect, while it also implies that the "dominant-positive" effect may be more pronounced. Indeed, we show that at similar wt:mutant p53 concentrations in cells - the mutant p53 gain-of-function stimulation of gene transcription and cell migration is more efficiently inhibited than the wt p53's tumor-suppressive transactivation and suppression of cell migration. These results suggest that the frequent mutant p53 accumulation in human tumor cells does not only directly strengthen its gain-of-function activity, but also protects the oncogenic p53 mutants from the functional dominance of wt p53.
Collapse
|
9
|
Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, Secker C, Diez L, Schulz A, Klockmeier K, Zenkner M, Golusik S, Rau K, Schnoegl S, Garner CC, Wanker EE. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol 2018; 14:e8071. [PMID: 29997244 PMCID: PMC6039870 DOI: 10.15252/msb.20178071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Information on protein-protein interactions (PPIs) is of critical importance for studying complex biological systems and developing therapeutic strategies. Here, we present a double-readout bioluminescence-based two-hybrid technology, termed LuTHy, which provides two quantitative scores in one experimental procedure when testing binary interactions. PPIs are first monitored in cells by quantification of bioluminescence resonance energy transfer (BRET) and, following cell lysis, are again quantitatively assessed by luminescence-based co-precipitation (LuC). The double-readout procedure detects interactions with higher sensitivity than traditional single-readout methods and is broadly applicable, for example, for detecting the effects of small molecules or disease-causing mutations on PPIs. Applying LuTHy in a focused screen, we identified 42 interactions for the presynaptic chaperone CSPα, causative to adult-onset neuronal ceroid lipofuscinosis (ANCL), a progressive neurodegenerative disease. Nearly 50% of PPIs were found to be affected when studying the effect of the disease-causing missense mutations L115R and ∆L116 in CSPα with LuTHy. Our study presents a robust, sensitive research tool with high utility for investigating the molecular mechanisms by which disease-associated mutations impair protein activity in biological systems.
Collapse
Affiliation(s)
- Philipp Trepte
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Sabrina Kruse
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Simona Kostova
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Sheila Hoffmann
- Synaptopathy, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Alexander Buntru
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Anne Tempelmeier
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Diez
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Aline Schulz
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Konrad Klockmeier
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Martina Zenkner
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Sabrina Golusik
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Kirstin Rau
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Sigrid Schnoegl
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Craig C Garner
- Synaptopathy, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Bidirectional allosteric interactions between cannabinoid receptor 1 (CB 1) and dopamine receptor 2 long (D 2L) heterotetramers. Eur J Pharmacol 2017; 813:66-83. [PMID: 28734930 DOI: 10.1016/j.ejphar.2017.07.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/22/2023]
Abstract
Type 1 cannabinoid (CB1) and dopamine 2 long form (D2L) receptors can physically interact to form heteromers that display unique pharmacology in vitro compared to homomeric complexes. Co-expression of CB1 and D2L and co-application of CB1 and D2 agonists increases cAMP levels while administration of either agonist alone decreases cAMP levels. To understand the observed co-agonist response, our first goal of the current study was to define the stoichiometry of CB1/D2L/Gα protein complexes. Using bioluminescence resonance energy transfer 2 (BRET2), we confirmed that, CB1 homodimers, D2L homodimers, and CB1/D2L heteromers are formed. By using sequential resonance energy transfer 2 (SRET2) combined with bimolecular fluorescence complementation (BiFC), we were able to demonstrate that CB1/D2L form heterotetramers consisting of CB1 and D2L homodimers. We demonstrated that CB1/D2L heterotetramers are coupled to at least two Gα proteins. The second aim of the study was to investigate allosteric effects of a D2L agonist (quinpirole) on CB1 receptor function and to investigate the effects of a CB1 agonist [arachidonyl-2-chloroethylamide (ACEA)] on D2L receptor function within CB1/D2L heterotetramers. Treating cells co-expressing CB1 and D2L with both ACEA and quinpirole switched CB1 and D2L receptor coupling and signaling from Gαi to Gαs proteins, enhanced β-arrestin1 recruitment and receptor co-internalization. The concept of bidirectional allosteric interaction within CB1/D2 heterotetramers has important implications for understanding the activity of receptor complexes in native tissues and under pathological conditions.
Collapse
|
11
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
12
|
The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D₂ Dopamine Receptor (D2L-R) Acts as an Intracellular Retention Signal. Int J Mol Sci 2016; 17:ijms17071152. [PMID: 27447620 PMCID: PMC4964525 DOI: 10.3390/ijms17071152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R) confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR) located within the insert could act as an RXR-type endoplasmic reticulum (ER) retention signal. Arginine residues (R) within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E), either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA), radioligand binding assay, bioluminescence resonance energy transfer (BRET2) β-arrestin 2 (βarr2) recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E) substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3) of the D2L-R appears to be the ER retention signal.
Collapse
|
13
|
Looyenga B, VanOpstall C, Lee Z, Bell J, Lodge E, Wrobel K, Arnoys E, Louters L. Determination of GLUT1 Oligomerization Parameters using Bioluminescent Förster Resonance Energy Transfer. Sci Rep 2016; 6:29130. [PMID: 27357903 PMCID: PMC4928127 DOI: 10.1038/srep29130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022] Open
Abstract
The facilitated glucose transporter GLUT1 (SLC2A1) is an important mediator of glucose homeostasis in humans. Though it is found in most cell types to some extent, the level of GLUT1 expression across different cell types can vary dramatically. Prior studies in erythrocytes-which express particularly high levels of GLUT1-have suggested that GLUT1 is able to form tetrameric complexes with enhanced transport activity. Whether dynamic aggregation of GLUT1 also occurs in cell types with more modest expression of GLUT1, however, is unclear. To address this question, we developed a genetically encoded bioluminescent Förster resonance energy transfer (BRET) assay using the luminescent donor Nanoluciferase and fluorescent acceptor mCherry. By tethering these proteins to the N-terminus of GLUT1 and performing saturation BRET analysis, we were able to demonstrate the formation of multimeric complexes in live cells. Parallel use of flow cytometry and immunoblotting further enabled us to estimate the density of GLUT1 proteins required for spontaneous oligomerization. These data provide new insights into the physiological relevance of GLUT1 multimerization as well as a new variant of BRET assay that is useful for measuring the interactions among other cell membrane proteins in live cells.
Collapse
Affiliation(s)
- Brendan Looyenga
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Calvin VanOpstall
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Zion Lee
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Jed Bell
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Evans Lodge
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Katherine Wrobel
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Eric Arnoys
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| | - Larry Louters
- Calvin College, Department of Chemistry &Biochemistry, 3201 Burton St SE, Grand Rapids, MI, 49546, USA
| |
Collapse
|
14
|
Abstract
Application of bioluminescence resonance energy transfer (BRET) assay has been of special value in measuring dynamic events such as protein-protein interactions (PPIs) in vitro or in vivo. It was only in the late 1990s the BRET assay using RLuc-YFP was introduced for biological research showing its use in determining interaction of two proteins involved in circadian rhythm. Several inherent attributes such as rapid and fairly sensitive ratiometric measurements, assessment of PPI irrespective of protein location in cellular compartment, and cost-effectiveness consenting to high-throughput assay development make BRET a popular genetic reporter-based assay for PPI studies. In BRET-based screening, within a defined proximity range of 10-100 Å, excited state energy of the luminescence molecule can excite the acceptor fluorophore in the form of resonance energy transfer, causing it to emit at its characteristic emission wavelength. Based on this principle, several such donor-acceptor pairs, using the Renilla luciferase or its mutants as donor and either GFP2, YFP, mOrange, TagRFP, or TurboFP as acceptor, have been reported for use.In recent years, BRET-related research has become significantly versatile in the assay format and its applicability by adopting the assay on multiple detection devices such as small-animal optical imaging platform or bioluminescence microscope. Beyond the scope of quantitative measurement of PPIs and protein dimerization, molecular optical imaging applications based on BRET assays have broadened its scope for screening of pharmacological compounds by unifying in vitro, live cell, and in vivo animal/plant measurement all on one platform. Taking examples from the literature, this chapter contributes to in-depth methodological details on how to perform in vitro and in vivo BRET experiments, and illustrates its advantages as a single-format assay.
Collapse
Affiliation(s)
- Shalini Dimri
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Soumya Basu
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India
| | - Abhijit De
- Molecular Functional Imaging Lab, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India.
| |
Collapse
|
15
|
BRET evidence that β2 adrenergic receptors do not oligomerize in cells. Sci Rep 2015; 5:10166. [PMID: 25955971 PMCID: PMC4424835 DOI: 10.1038/srep10166] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/01/2015] [Indexed: 11/29/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is often used to study association of membrane proteins, and in particular oligomerization of G protein-coupled receptors (GPCRs). Oligomerization of class A GPCRs is controversial, in part because the methods used to study this question are not completely understood. Here we reconsider oligomerization of the class A β2 adrenergic receptor (β2AR), and reevaluate BRET titration as a method to study membrane protein association. Using inducible expression of the energy acceptor at multiple levels of donor expression we find that BRET between β2AR protomers is directly proportional to the density of the acceptor up to ~3,000 acceptors μm−2, and does not depend on the density of the donor or on the acceptor:donor (A:D) stoichiometry. In contrast, BRET between tightly-associating control proteins does not depend on the density of the acceptor, but does depend on the density of the donor and on the A:D ratio. We also find that the standard frameworks used to interpret BRET titration experiments rely on simplifying assumptions that are frequently invalid. These results suggest that β2ARs do not oligomerize in cells, and demonstrate a reliable method of assessing membrane protein association with BRET.
Collapse
|
16
|
Bedini A. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins. Methods Mol Biol 2015; 1230:115-128. [PMID: 25293320 DOI: 10.1007/978-1-4939-1708-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bioluminescence resonance energy transfer (BRET) is a very sensitive technique employed to study protein-protein interactions, including G-protein-coupled receptors (GPCRs) hetero- and homo-dimerization. Recently, BRET has also been used to investigate the interaction between GPCRs (e.g., β2 adrenergic receptor, muscarinic M2 receptor, dopaminergic D2 receptor) and non-visual arrestins. Here a BRET protocol is described to investigate interactions between the kappa opioid receptor (KOR) and non visual arrestins (arrestin-2 and arrestin-3) in HEK-293 cells, both under basal conditions and after exposure to KOR ligands.
Collapse
Affiliation(s)
- Andrea Bedini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Irnerio, 48, Bologna, 40126, Italy,
| |
Collapse
|
17
|
Demonstration of a direct interaction between β2-adrenergic receptor and insulin receptor by BRET and bioinformatics. PLoS One 2014; 9:e112664. [PMID: 25401701 PMCID: PMC4234468 DOI: 10.1371/journal.pone.0112664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/06/2014] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism is under the cooperative regulation of both insulin receptor (IR) and β2-adrenergic receptor (β2AR), which represent the receptor tyrosine kinases (RTKs) and seven transmembrane receptors (7TMRs), respectively. Studies demonstrating cross-talk between these two receptors and their endogenous coexpression have suggested their possible interactions. To evaluate the effect of IR and prospective heteromerization on β2AR properties, we showed that IR coexpression had no effect on the ligand binding properties of β2AR; however, IR reduced β2AR surface expression and accelerated its internalization. Additionally, both receptors displayed a similar distribution pattern with a high degree of colocalization. To test the possible direct interaction between β2AR and IR, we employed quantitative BRET2 saturation and competition assays. Saturation assay data suggested constitutive β2AR and IR homo- and heteromerization. Calculated acceptor/donor (AD50) values as a measure of the relative affinity for homo- and heteromer formation differed among the heteromers that could not be explained by a simple dimer model. In heterologous competition assays, a transient increase in the BRET2 signal with a subsequent hyperbolical decrease was observed, suggesting higher-order heteromer formation. To complement the BRET2 data, we employed the informational spectrum method (ISM), a virtual spectroscopy method to investigate protein-protein interactions. Computational peptide scanning of β2AR and IR identified intracellular domains encompassing residues at the end of the 7th TM domain and C-terminal tail of β2AR and a cytoplasmic part of the IR β chain as prospective interaction domains. ISM further suggested a high probability of heteromer formation and homodimers as basic units engaged in heteromerization. In summary, our data suggest direct interaction and higher-order β2AR:IR oligomer formation, likely comprising heteromers of homodimers.
Collapse
|
18
|
Szalai B, Hoffmann P, Prokop S, Erdélyi L, Várnai P, Hunyady L. Improved methodical approach for quantitative BRET analysis of G Protein Coupled Receptor dimerization. PLoS One 2014; 9:e109503. [PMID: 25329164 PMCID: PMC4201472 DOI: 10.1371/journal.pone.0109503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 09/11/2014] [Indexed: 01/22/2023] Open
Abstract
G Protein Coupled Receptors (GPCR) can form dimers or higher ordered oligomers, the process of which can remarkably influence the physiological and pharmacological function of these receptors. Quantitative Bioluminescence Resonance Energy Transfer (qBRET) measurements are the gold standards to prove the direct physical interaction between the protomers of presumed GPCR dimers. For the correct interpretation of these experiments, the expression of the energy donor Renilla luciferase labeled receptor has to be maintained constant, which is hard to achieve in expression systems. To analyze the effects of non-constant donor expression on qBRET curves, we performed Monte Carlo simulations. Our results show that the decrease of donor expression can lead to saturation qBRET curves even if the interaction between donor and acceptor labeled receptors is non-specific leading to false interpretation of the dimerization state. We suggest here a new approach to the analysis of qBRET data, when the BRET ratio is plotted as a function of the acceptor labeled receptor expression at various donor receptor expression levels. With this method, we were able to distinguish between dimerization and non-specific interaction when the results of classical qBRET experiments were ambiguous. The simulation results were confirmed experimentally using rapamycin inducible heterodimerization system. We used this new method to investigate the dimerization of various GPCRs, and our data have confirmed the homodimerization of V2 vasopressin and CaSR calcium sensing receptors, whereas our data argue against the heterodimerization of these receptors with other studied GPCRs, including type I and II angiotensin, β2 adrenergic and CB1 cannabinoid receptors.
Collapse
Affiliation(s)
- Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Péter Hoffmann
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Erdélyi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
- * E-mail:
| |
Collapse
|
19
|
Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET(2). Mol Cell Biochem 2014; 397:285-93. [PMID: 25148873 DOI: 10.1007/s11010-014-2196-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Protein kinase CK2 is a ubiquitous pro-survival kinase whose substrate targets are involved in various cellular processes. Crystal structure analysis confirmed constitutive activity of the kinase, yet CK2 activity regulation in the cell is still obscure. In-vitro studies suggest autoinhibitory aggregation of the hetero-tetrameric CK2 holoenzyme as a basis for CK2 regulation. In this study, we applied bioluminescent resonance energy transfer (BRET) technology to investigate CK2 holoenzyme aggregation in living cells. We designed a BRET(2) pair consisting of the fusion proteins CK2α-Rluc8 and CK2α-GFP(2). This BRET(2) sensor reported specific interaction of CK2 holoenzyme complexes. Furthermore, the BRET(2) sensor was applied to study modulators of CK2 aggregation. We found that CK2 aggregation is not static and can be influenced by the CK2-binding protein alpha subunit of the heterotrimeric G-protein that stimulates adenylyl cyclase (Gαs) and the polycationic compound polylysine. Gαs, but not the CK2 substrate β-arrestin2, decreased the BRET(2) signal by up to 50%. Likewise polylysine, but not the CK2 inhibitor DRB, decreased the signal in a dose-dependent manner up to 50%. For the first time, we present direct experimental evidence for CK2 holoenzyme aggregates in the cell. Our data suggest that CK2 activity may be controlled by holoenzyme aggregation, to our knowledge a novel mechanism for protein kinase regulation. Moreover, the BRET(2) sensor used in our study is a novel tool for studying CK2 regulation by aggregation and pharmacological screening for novel allosteric CK2 effectors.
Collapse
|
20
|
Jockers R. Comment on "The Use of BRET to Study Receptor-Protein Interactions". Front Endocrinol (Lausanne) 2014; 5:3. [PMID: 24478757 PMCID: PMC3898058 DOI: 10.3389/fendo.2014.00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ralf Jockers
- U1016, INSERM, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- University of Paris Descartes, Paris, France
- *Correspondence:
| |
Collapse
|
21
|
De A, Jasani A, Arora R, Gambhir SS. Evolution of BRET Biosensors from Live Cell to Tissue-Scale In vivo Imaging. Front Endocrinol (Lausanne) 2013; 4:131. [PMID: 24065957 PMCID: PMC3779814 DOI: 10.3389/fendo.2013.00131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/05/2013] [Indexed: 11/13/2022] Open
Abstract
Development of bioluminescence resonance energy transfer (BRET) based genetic sensors for sensing biological functions such as protein-protein interactions (PPIs) in vivo has a special value in measuring such dynamic events at their native environment. Since its inception in the late nineties, BRET related research has gained significant momentum in terms of adding versatility to the assay format and wider applicability where it has been suitably used. Beyond the scope of quantitative measurement of PPIs and protein dimerization, molecular imaging applications based on BRET assays have broadened its scope for screening pharmacologically important compounds by in vivo imaging as well. In this mini-review we focus on an in-depth analysis of engineered BRET systems developed and their successful application to cell-based assays as well as in vivo non-invasive imaging in live subjects.
Collapse
Affiliation(s)
- Abhijit De
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
- *Correspondence: Abhijit De, Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India e-mail:
| | - Akshi Jasani
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Rohit Arora
- Molecular Functional Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Sanjiv S. Gambhir
- MIPS, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|