1
|
Du X, Liu H, Tian Z, Zhang S, Shi L, Wang Y, Guo X, Zhang B, Yuan S, Zeng X, Zhang H. PI3K/AKT/mTOR pathway mediated-cell cycle dysregulation contribute to malignant proliferation of mouse spermatogonia induced by microcystin-leucine arginine. ENVIRONMENTAL TOXICOLOGY 2023; 38:343-358. [PMID: 36288207 DOI: 10.1002/tox.23691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Environmental cyanotoxin exposure may be a trigger of testicular cancer. Activation of PI3K/AKT/mTOR signaling pathway is the critical molecular event in testicular carcinogenesis. As a widespread cyanotoxin, microcystin-leucine arginine (MC-LR) is known to induce cell malignant transformation and tumorigenesis. However, the effects of MC-LR on the regulatory mechanism of PI3K/AKT/mTOR pathway in seminoma, the most common testicular tumor, are unknown. In this study, mouse spermatogonia cell line (GC-1) and nude mice were used to investigate the effects and mechanisms of MC-LR on the malignant transformation of spermatogonia by nude mouse tumorigenesis assay, cell migration invasion assay, western blot, and cell cycle assay, and so forth. The results showed that, after continuous exposure to environmentally relevant concentrations of MC-LR (20 nM) for 35 generations, the proliferation, migration, and invasion abilities of GC-1 cells were increased by 120%, 340%, and 370%, respectively. In nude mice, MC-LR-treated GC-1 cells formed tumors with significantly greater volume (0.998 ± 0.768 cm3 ) and weight (0.637 ± 0.406 g) than the control group (0.067 ± 0.039 cm3 ; 0.094 ± 0.087 g) (P < .05). Furthermore, PI3K inhibitor Wortmannin inhibited the PI3K/AKT/mTOR pathway and its downstream proteins (c-MYC, CDK4, CCND1, and MMP14) activated by MC-LR. Blocking PI3K alleviated MC-LR-induced cell cycle disorder and malignant proliferation, migration and invasive of GC-1 cells. Altogether, our findings suggest that MC-LR can induce malignant transformation of mouse spermatogonia, and the PI3K/AKT/mTOR pathway-mediated cell cycle dysregulation may be an important target for malignant proliferation. This study provides clues to further reveal the etiology and pathogenesis of seminoma.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Josarayi GA, Mohammad-Hasani A, Aftabi Y, Moudi E, Hosseinzadeh Colagar A. The AhRR-c.565C>G transversion may increase total antioxidant capacity levels of the seminal plasma in infertile men. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17428-17435. [PMID: 28593539 DOI: 10.1007/s11356-017-9356-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
The Aryl hydrocarbon receptor (AhR)-repressor (AhRR) is a regulator of the AhR pathway, which plays an important role in xenobiotic and reactive oxygen species (ROS) metabolism. Total antioxidant capacity (TAC) is a major factor in semen quality that protects sperm against ROS stress. Malondialdehyde (MDA) is the indicator of lipid peroxidation damage that is occurred due to ROSs. In this study, we determined and compared the MDA and TAC levels of infertile men's semen and blood plasma regarding genotype groups of AhRR-c.565C>G transversion. Semen and blood samples of 123 infertile males were collected from the Fatemeh Zahra IVF Centre, Babol, Iran. TAC and MDA levels of seminal and blood plasma were measured by TBARS and FRAP methods, respectively. Cases were genotyped by the PCR-RFLP method. The frequency of c.565C>G genotypes was determined as CC (34.14%), CG (55.28%) and GG (10.58%). Mean levels of TAC μm/L and MDA nmol/mL in semen plasma of CC, CG and GG groups were (1365.7, 1.28), (1542.8, 1.51) and (1860.2, 0.82), respectively. Also, mean levels of TAC μm/L and MDA nmol/mL in blood plasma samples in CC, CG and GG genotypes were (806.14, 1.168), (727.1, 1.006) and (635.7, 0.83), respectively. Comparison of marker levels between genotypes revealed that the TAC level of semen plasma in the GG genotype was significantly higher than its level in the CC group (p < 0.05). Our findings showed that in seminal plasma of infertile men with the GG genotype of AhRR-c.565C>G transversion, the level of total antioxidant capacity is significantly higher in comparison with the CC genotype. Then, the G allele of AhRR-c.565C>G transversion may have a role in the increase in antioxidant capacity of seminal plasma.
Collapse
Affiliation(s)
- Gholam Ali Josarayi
- Fatemeh Zahra Infertility and Health Reproductive Research Center, Babol University of Medical Sciences, Babol, 47745-47176, Iran
| | - Azadeh Mohammad-Hasani
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Younes Aftabi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Emadodin Moudi
- Department of Urology, Babol University of Medical Sciences, Babol, 47745-47176, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
3
|
DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5:821-64. [PMID: 25229548 PMCID: PMC4198933 DOI: 10.3390/genes5030821] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient's response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.
Collapse
|
4
|
Brokken LJS, Giwercman YL. Gene-environment interactions in male reproductive health: special reference to the aryl hydrocarbon receptor signaling pathway. Asian J Androl 2014; 16:89-96. [PMID: 24369137 PMCID: PMC3901886 DOI: 10.4103/1008-682x.122193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the last few decades, there have been numerous reports of adverse effects on the reproductive health of wildlife and laboratory animals caused by exposure to endocrine disrupting chemicals (EDCs). The increasing trends in human male reproductive disorders and the mounting evidence for causative environmental factors have therefore sparked growing interest in the health threat posed to humans by EDCs, which are substances in our food, environment and consumer items that interfere with hormone action, biosynthesis or metabolism, resulting in disrupted tissue homeostasis or reproductive function. The mechanisms of EDCs involve a wide array of actions and pathways. Examples include the estrogenic, androgenic, thyroid and retinoid pathways, in which the EDCs may act directly as agonists or antagonists, or indirectly via other nuclear receptors. Dioxins and dioxin-like EDCs exert their biological and toxicological actions through activation of the aryl hydrocarbon-receptor, which besides inducing transcription of detoxifying enzymes also regulates transcriptional activity of other nuclear receptors. There is increasing evidence that genetic predispositions may modify the susceptibility to adverse effects of toxic chemicals. In this review, potential consequences of hereditary predisposition and EDCs are discussed, with a special focus on the currently available publications on interactions between dioxin and androgen signaling.
Collapse
Affiliation(s)
- Leon J S Brokken
- Department of Clinical Sciences, Molecular Genetic Reproductive Medicine, Lund University, Malmö, Sweden
| | | |
Collapse
|
5
|
Lee LK, Foo KY. Recent insights on the significance of transcriptomic and metabolomic analysis of male factor infertility. Clin Biochem 2014; 47:973-82. [PMID: 24875852 DOI: 10.1016/j.clinbiochem.2014.05.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022]
Abstract
Infertility is a worldwide reproductive health problem which affects approximately 15% of couples, with male factor infertility dominating nearly 50% of the affected population. The nature of the phenomenon is underscored by a complex array of transcriptomic, proteomic and metabolic differences which interact in unknown ways. Many causes of male factor infertility are still defined as idiopathic, and most diagnosis tends to be more descriptive rather than specific. As such, the emergence of novel transcriptomic and metabolomic studies may hold the key to more accurately diagnose and treat male factor infertility. This paper provides the most recent evidence underlying the role of transcriptomic and metabolomic analysis in the management of male infertility. A summary of the current knowledge and new discovery of noninvasive, highly sensitive and specific biomarkers which allow the expansion of this area is outlined.
Collapse
Affiliation(s)
- L K Lee
- Nutrition Program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - K Y Foo
- Environment and Occupational Health Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; River Engineering and Urban Drainage Research Centre, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
6
|
Ferlin A, Foresta C. Testis cancer: genes, environment, hormones. Front Endocrinol (Lausanne) 2014; 5:172. [PMID: 25374560 PMCID: PMC4204530 DOI: 10.3389/fendo.2014.00172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/30/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alberto Ferlin
- Centre for Human Reproduction Pathology, Department of Medicine, University of Padova, Padova, Italy
- *Correspondence:
| | - Carlo Foresta
- Centre for Human Reproduction Pathology, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|