1
|
Mehta R, Kuhad A, Bhandari R. Nitric oxide pathway as a plausible therapeutic target in autism spectrum disorders. Expert Opin Ther Targets 2022; 26:659-679. [DOI: 10.1080/14728222.2022.2100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh – 160 014 India
| |
Collapse
|
2
|
Mulay KV, Karthik SV. Managing constipation in children with ASD - A challenge worth tackling. Pediatr Neonatol 2022; 63:211-219. [PMID: 35190271 DOI: 10.1016/j.pedneo.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Autism Spectrum disorder (ASD) is well known to be associated with significantly high rates of gastrointestinal problems, constipation being common among them, imposing a significant burden on child and the family. On account of multiple underlying factors, both diagnosis and subsequent management of constipation in children with ASD are much more challenging as compared to managing constipation in 'neurotypical' children. Associated higher rate of presentation to the hospital emergency and subsequent hospital admission rates add to the burden. Hence, there is a need for recognizing constipation as a problem in children with ASD. This review summarizes optimization of its management by adopting a multidisciplinary holistic approach to achieve good outcomes and enhance the quality of life for the child and the family.
Collapse
Affiliation(s)
- Kalyani Vijaykumar Mulay
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sivaramakrishnan Venkatesh Karthik
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
A multifactorial model for the etiology of neuropsychiatric disorders: the role of advanced paternal age. Pediatr Res 2022; 91:757-770. [PMID: 33674740 DOI: 10.1038/s41390-021-01435-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Mental or neuropsychiatric disorders are widespread within our societies affecting one in every four people in the world. Very often the onset of a mental disorder (MD) occurs in early childhood and substantially reduces the quality of later life. Although the global burden of MDs is rising, mental health care is still suboptimal, partly due to insufficient understanding of the processes of disease development. New insights are needed to respond to this worldwide health problem. Next to the growing burden of MDs, there is a tendency to postpone pregnancy for various economic and practical reasons. In this review, we describe the current knowledge on the potential effect from advanced paternal age (APA) on development of autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, bipolar disorder, obsessive-compulsive disorder, and Tourette syndrome. Although literature did not clearly define an age cut-off for APA, we here present a comprehensive multifactorial model for the development of MDs, including the role of aging, de novo mutations, epigenetic mechanisms, psychosocial environment, and selection into late fatherhood. Our model is part of the Paternal Origins of Health and Disease paradigm and may serve as a foundation for future epidemiological research designs. This blueprint will increase the understanding of the etiology of MDs and can be used as a practical guide for clinicians favoring early detection and developing a tailored treatment plan. Ultimately, this will help health policy practitioners to prevent the development of MDs and to inform health-care workers and the community about disease determinants. Better knowledge of the proportion of all risk factors, their interactions, and their role in the development of MDs will lead to an optimization of mental health care and management. IMPACT: We design a model of causation for MDs, integrating male aging, (epi)genetics, and environmental influences. It adds new insights into the current knowledge about associations between APA and MDs. In clinical practice, this comprehensive model may be helpful in early diagnosis and in treatment adopting a personal approach. It may help in identifying the proximate cause on an individual level or in a specific subpopulation. Besides the opportunity to measure the attributed proportions of risk factors, this model may be used as a blueprint to design prevention strategies for public health purposes.
Collapse
|
4
|
Liu Z, Mao X, Dan Z, Pei Y, Xu R, Guo M, Liu K, Zhang F, Chen J, Su C, Zhuang Y, Tang J, Xia Y, Qin L, Hu Z, Liu X. Gene variations in autism spectrum disorder are associated with alteration of gut microbiota, metabolites and cytokines. Gut Microbes 2022; 13:1-16. [PMID: 33412999 PMCID: PMC7808426 DOI: 10.1080/19490976.2020.1854967] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The genetic variations and dysbiosis of gut microbiota are associated with ASD. However, the role of the microbiota in the etiology of ASD in terms of host genetic susceptibility remains unclear. This study aims to systematically explore the interplay between host genetic variation and gut microbiota in ASD children. Whole-exon sequencing was applied to 26 ASD children and 26 matched controls to identify the single nucleotide variations (SNVs) in ASD. Our previous study revealed alteration in gut microbiota and disorder of metabolism activity in ASD for this cohort. Systematic bioinformatic analyses were further performed to identify associations between SNVs and gut microbiota, as well as their metabolites. The ASD SNVs were significantly enriched in genes associated with innate immune response, protein glycosylation process, and retrograde axonal transport. These SNVs were also correlated with the microbiome composition and a broad aspect of microbial functions, especially metabolism. Additionally, the abundance of metabolites involved in the metabolic network of neurotransmitters was inferred to be causally related to specific SNVs and microbes. Furthermore, our data suggested that the interaction of host genetics and gut microbes may play a crucial role in the immune and metabolism homeostasis of ASD. This study may provide valuable clues to investigate the interaction of host genetic variations and gut microbiota in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Zhou Dan
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Yang Pei
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mengchen Guo
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Kangjian Liu
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Faming Zhang
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Junyu Chen
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yaoyao Zhuang
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junming Tang
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Lianhong Qin
- Children Growth Center of Bo’ai Homestead in Yixing, Yixing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China,Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China,CONTACT Xingyin Liu State Key Laboratory of Reproductive Medicine, Center of Gobal Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, P.R. China
| |
Collapse
|
5
|
Sarovic D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front Psychiatry 2021; 12:767075. [PMID: 34867553 PMCID: PMC8637925 DOI: 10.3389/fpsyt.2021.767075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
This paper presents a unifying theory for autism by applying the framework of a pathogenetic triad to the scientific literature. It proposes a deconstruction of autism into three contributing features (an autistic personality dimension, cognitive compensation, and neuropathological risk factors), and delineates how they interact to cause a maladaptive behavioral phenotype that may require a clinical diagnosis. The autistic personality represents a common core condition, which induces a set of behavioral issues when pronounced. These issues are compensated for by cognitive mechanisms, allowing the individual to remain adaptive and functional. Risk factors, both exogenous and endogenous ones, show pathophysiological convergence through their negative effects on neurodevelopment. This secondarily affects cognitive compensation, which disinhibits a maladaptive behavioral phenotype. The triad is operationalized and methods for quantification are presented. With respect to the breadth of findings in the literature that it can incorporate, it is the most comprehensive model yet for autism. Its main implications are that (1) it presents the broader autism phenotype as a non-pathological core personality domain, which is shared across the population and uncoupled from associated features such as low cognitive ability and immune dysfunction, (2) it proposes that common genetic variants underly the personality domain, and that rare variants act as risk factors through negative effects on neurodevelopment, (3) it outlines a common pathophysiological mechanism, through inhibition of neurodevelopment and cognitive dysfunction, by which a wide range of endogenous and exogenous risk factors lead to autism, and (4) it suggests that contributing risk factors, and findings of immune and autonomic dysfunction are clinically ascertained rather than part of the core autism construct.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| |
Collapse
|
6
|
Sorrell MR, Killian KA. Innate immune system function following systemic RNA-interference of the Fragile X Mental Retardation 1 gene in the cricket Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2020; 126:104097. [PMID: 32791072 DOI: 10.1016/j.jinsphys.2020.104097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/02/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Fragile X syndrome (FXS), caused by a mutation in the Fragile X Mental Retardation 1 (FMR1) gene, is a common form of inherited mental retardation. Mutation of the gene leads to a loss of the gene product Fragile X Mental Retardation Protein (FMRP). While a loss of FMRP has been primarily associated with neural and cognitive deficits, it has also been reported to lead to immune system dysfunction in both humans and flies. We used the Acheta domesticus transcriptome to identify a highly conserved cricket ortholog of FMR1 (adfmr1). We cloned a partial cDNA of adfmr1, used systemic RNA interference (RNAi) to knockdown adfmr1 expression, and examined the impact of this knockdown (KD) on the cellular and humoral responses of the insect innate immune system. Following RNAi, both male and female crickets exhibited an increase in the number of circulating hemocytes, a decrease in total hemolymph phenoloxidase (PO) activity, and an increase in fat body lysozyme expression. Despite similar changes in these immune parameters in both sexes, male and female crickets responded differently to an immune challenge. Most KD males failed to survive an intra-abdominal injection of bacterial lipopolysaccharide, while KD females were just as likely as control females to survive this challenge. Our results support that decreased fmr1 expression can alter the cellular and humoral defenses of the insect innate immune system, and may lead to a decrease in male, but not female, immunocompetence.
Collapse
Affiliation(s)
- Mollie R Sorrell
- Department of Biology, Miami University, 258 Pearson Hall, Oxford, OH 45056, USA; Department of Biology, Defiance College, Defiance, OH 43512, USA
| | - Kathleen A Killian
- Department of Biology, Miami University, 258 Pearson Hall, Oxford, OH 45056, USA.
| |
Collapse
|
7
|
Sordillo JE, Korrick S, Laranjo N, Carey V, Weinstock GM, Gold DR, O’Connor G, Sandel M, Bacharier LB, Beigelman A, Zeiger R, Litonjua AA, Weiss ST. Association of the Infant Gut Microbiome With Early Childhood Neurodevelopmental Outcomes: An Ancillary Study to the VDAART Randomized Clinical Trial. JAMA Netw Open 2019; 2:e190905. [PMID: 30901046 PMCID: PMC6583279 DOI: 10.1001/jamanetworkopen.2019.0905] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE In animal models, the early life gut microbiome influences later neurodevelopment. Corresponding data in human populations are lacking. OBJECTIVE To study associations between the gut microbiome in infants and development at preschool age measured by the Ages and Stages Questionnaire, third edition (ASQ-3). DESIGN, SETTING, AND PARTICIPANTS This ancillary cohort study of the Vitamin D Antenatal Asthma Reduction Trial (VDAART) used data from 715 participants who had development assessed at 3 years of age by the ASQ-3, which included scores in 5 domains (gross motor skills, fine motor skills, problem solving, communication, and personal and social skills). A total of 309 stool samples were collected from infants aged 3 to 6 months for microbiome analysis using 16S rRNA gene sequencing. EXPOSURES Infant gut microbiome. MAIN OUTCOMES AND MEASURES Continuous ASQ-3 scores and typical vs potential delay in the 5 developmental domains. Factor scores for bacterial coabundance groups were used as predictors in regression models of continuous ASQ-3 scores. Logistic regression was used to examine bacterial coabundance scores and odds of scoring below the threshold for typical development. Multivariate analysis examined the abundance of individual taxa and ASQ-3 scores. RESULTS The 309 participants (170 [55.0%] male) with ASQ-3 scores and stool samples were ethnically diverse (136 [44.0%] black, 41 [13.3%] Hispanic, 86 [27.8%] white, and 46 [14.9%] other race/ethnicity); the mean (SD) age at ASQ-3 assessment was 3.0 (0.07) years. Coabundance scores dominated by Clostridiales (Lachnospiraceae genera and other, unclassified Clostridiales taxa) were associated with poorer ASQ-3 communication (β, -1.12; 95% CI, -2.23 to -0.01; P = .05) and personal and social (β, -1.44; 95% CI, -2.47 to -0.40; P = .01) scores and with increased odds of potential delay for communication (odds ratio [OR], 1.69; 95% CI, 1.06 to 2.68) and personal and social skills (OR, 1.96; 95% CI, 1.22 to 3.15) per unit increase in coabundance score. The Bacteroides-dominated coabundance grouping was associated with poorer fine motor scores (β, -2.42; 95% CI, -4.29 to -0.55; P = .01) and with increased odds of potential delay for fine motor skills (OR, 1.52; 95% CI, 1.07 to 2.16) per unit increase in coabundance score. Multivariate analysis detected similar family-level and order-level associations. CONCLUSIONS AND RELEVANCE These findings suggest an association between infant gut microbiome composition and communication, personal and social, and fine motor skills at age 3 years. The majority of associations were driven by taxa within the order Clostridiales.
Collapse
Affiliation(s)
- Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nancy Laranjo
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Vincent Carey
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Diane R. Gold
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - George O’Connor
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Megan Sandel
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Leonard B. Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Avraham Beigelman
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Robert Zeiger
- Department of Allergy and Research and Evaluation, Kaiser Permanente Southern California Region, San Diego and Pasadena
| | | | - Scott T. Weiss
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Pirzadroozbahani N, Ahmadi SAY, Hekmat H, Roozbahani GA, Shahsavar F. Autism and KIR genes of the human genome: A brief meta-analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Berkiks I, Benmhammed H, Mesfioui A, Ouichou A, El Hasnaoui A, Mouden S, Touil T, Bahbiti Y, Nakache R, El Hessni A. Postnatal melatonin treatment protects against affective disorders induced by early-life immune stimulation by reducing the microglia cell activation and oxidative stress. Int J Neurosci 2017; 128:495-504. [PMID: 29077529 DOI: 10.1080/00207454.2017.1398156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Systemic inflammation induced by neonatal infection may result as long-term hyper-activation of microglial cells followed by an overproduction of pro-inflammatory cytokines, such as tumor necrosis factor-alpha, nitric oxide and lipid peroxidation. Those inflammation mediators can trigger behavioral disruption and/or cognitive disorders. OBJECTIVE The present work aims to evaluate the effect of melatonin (a cytokine release modulator and antioxidant agent) in the reduction of the prefrontal microglia activation and depressive-like behaviors induced by lipopolysaccharide (LPS) injection in adult rats. RESULTS The effect of melatonin (5 mg/kg) was compared to minocycline (50 mg/kg), a well-known anti-inflammatory drug with potent inhibitory effect on microglial activation. Our results showed that LPS injection induced a significant increase in prefrontal cortex tumor necrosis factor-alpha and nitric oxide levels. Furthermore, lipid peroxidation and microglial activation were highly increased in the prefrontal cortex compared to control. The melatonin treatment induced a significant decrease on nitric oxide and lipid peroxidation levels in the prefrontal cortex and significant decrease on tumor necrosis factor-alpha and microglia activation. Melatonin can also induce a significant reduction in the anxiety and depression-like effect induced by PND9 LPS administration. CONCLUSION Our results demonstrated that melatonin possesses potent protective effect against the depression and anxiety induced by LPS. The underlying effect of melatonin is probably due to the reduction of nitric oxide toxic effect and lipid peroxidation in addition to its anti-inflammatory effect.
Collapse
Affiliation(s)
- I Berkiks
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - H Benmhammed
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - A Mesfioui
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - A Ouichou
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - A El Hasnaoui
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - S Mouden
- b Provincial Laboratory of Serology , Diagnostic Centre, Regional Hospital El Idrissi , Kenitra
| | - T Touil
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - Y Bahbiti
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - R Nakache
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| | - A El Hessni
- a Department of Biology, Laboratory of Genetic, Neuroendocrinology, and Biotechnology, Faculty of Sciences , Ibn Tofail University , Kenitra , Morocco
| |
Collapse
|
10
|
The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes. Mol Neurobiol 2017; 55:4834-4856. [DOI: 10.1007/s12035-017-0692-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/13/2017] [Indexed: 01/28/2023]
|
11
|
Lange S. Peptidylarginine Deiminases as Drug Targets in Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurol 2016; 7:22. [PMID: 26941709 PMCID: PMC4761975 DOI: 10.3389/fneur.2016.00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/09/2016] [Indexed: 12/17/2022] Open
Abstract
Oxygen deprivation and infection are major causes of perinatal brain injury leading to cerebral palsy and other neurological disabilities. The identification of novel key factors mediating white and gray matter damage are crucial to allow better understanding of the specific contribution of different cell types to the injury processes and pathways for clinical intervention. Recent studies in the Rice-Vannucci mouse model of neonatal hypoxic ischemia (HI) have highlighted novel roles for calcium-regulated peptidylarginine deiminases (PADs) and demonstrated neuroprotective effects of pharmacological PAD inhibition following HI and synergistic infection mimicked by lipopolysaccharide stimulation.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Pharmacology, UCL School of Pharmacy, London, UK; Department of Biomedical Sciences, University of Westminster, London, UK
| |
Collapse
|
12
|
Groer MW, Gregory KE, Louis-Jacques A, Thibeau S, Walker WA. The very low birth weight infant microbiome and childhood health. ACTA ACUST UNITED AC 2015; 105:252-64. [PMID: 26663857 DOI: 10.1002/bdrc.21115] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review describes current understandings about the nature of the very low birth weight infant (VLBW) gut microbiome. VLBW infants often experience disruptive pregnancies and births, and prenatal factors can influence the maturity of the gut and immune system, and disturb microbial balance and succession. Many VLBWs experience rapid vaginal or Caesarean births. After birth these infants often have delays in enteral feeding, and many receive little or no mother's own milk. Furthermore the stressors of neonatal life in the hospital environment, common use of antibiotics, invasive procedures and maternal separation can contribute to dysbiosis. These infants experience gastrointestinal dysfunction, sepsis, transfusions, necrotizing enterocolitis, oxygen toxicity, and other pathophysiological conditions that affect the normal microbiota. The skin is susceptible to dysbiosis, due to its fragility and contact with NICU organisms. Dysbiosis in early life may resolve but little is known about the timing of the development of the signature gut microbiome in VLBWs. Dysbiosis has been associated with a number of physical and behavioral problems, including autism spectrum disorders, allergy and asthma, gastrointestinal disease, obesity, depression, and anxiety. Dysbiosis may be prevented or ameliorated in part by prenatal care, breast milk feeding, skin to skin contact, use of antibiotics only when necessary, and vigilance during infancy and early childhood.
Collapse
Affiliation(s)
- Maureen W Groer
- Morsani College of Medicine, University of South Florida College of Nursing, Tampa, Florida
| | - Katherine E Gregory
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Nursing, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adetola Louis-Jacques
- Morsani College of Medicine, University of South Florida College of Nursing, Tampa, Florida
| | | | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Miyazaki C, Koyama M, Ota E, Swa T, Amiya RM, Mlunde LB, Tachibana Y, Yamamoto-Hanada K, Mori R. Allergies in Children with Autism Spectrum Disorder: a Systematic Review and Meta-analysis. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2015. [DOI: 10.1007/s40489-015-0059-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatric Health Med Ther 2015; 6:153-166. [PMID: 29388597 PMCID: PMC5683266 DOI: 10.2147/phmt.s85717] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a genetically determined neurodevelopmental brain disorder presenting with restricted, repetitive patterns of behaviors, interests, and activities, or persistent deficits in social communication and social interaction. ASD is characterized by many different clinical endophenotypes and is potentially linked with certain comorbidities. According to current recommendations, children with ASD are at risk of having alimentary tract disorders - mainly, they are at a greater risk of general gastrointestinal (GI) concerns, constipation, diarrhea, and abdominal pain. GI symptoms may overlap with ASD core symptoms through different mechanisms. These mechanisms include multilevel pathways in the gut-brain axis contributing to alterations in behavior and cognition. Shared pathogenetic factors and pathophysiological mechanisms possibly linking ASD and GI disturbances, as shown by most recent studies, include intestinal inflammation with or without autoimmunity, immunoglobulin E-mediated and/or cell-mediated GI food allergies as well as gluten-related disorders (celiac disease, wheat allergy, non-celiac gluten sensitivity), visceral hypersensitivity linked with functional abdominal pain, and dysautonomia linked with GI dysmotility and gastroesophageal reflux. Dysregulation of the gut microbiome has also been shown to be involved in modulating GI functions with the ability to affect intestinal permeability, mucosal immune function, and intestinal motility and sensitivity. Metabolic activity of the microbiome and dietary components are currently suspected to be associated with alterations in behavior and cognition also in patients with other neurodegenerative diseases. All the above-listed GI factors may contribute to brain dysfunction and neuroinflammation depending upon an individual patient's genetic vulnerability. Due to a possible clinical endophenotype presenting as comorbidity of ASD and GI disorders, we propose treating this situation as an "overlap syndrome". Practical use of the concept of an overlap syndrome of ASD and GI disorders may help in identifying those children with ASD who suffer from an alimentary tract disease. Unexplained worsening of nonverbal behaviors (agitation, anxiety, aggression, self-injury, sleep deprivation) should alert professionals about this possibility. This may shorten the time to diagnosis and treatment commencement, and thereby alleviate both GI and ASD symptoms through reducing pain, stress, or discomfort. Furthermore, this may also protect children against unnecessary dietary experiments and restrictions that have no medical indications. A personalized approach to each patient is necessary. Our understanding of ASDs has come a long way, but further studies and more systematic research are warranted.
Collapse
Affiliation(s)
- Jolanta Wasilewska
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Mark Klukowski
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
15
|
miRNA profiling in autism spectrum disorder in China. GENOMICS DATA 2015; 6:108-9. [PMID: 26697346 PMCID: PMC4664689 DOI: 10.1016/j.gdata.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
Autism spectrum disorder (ASD) is a clinically complex and heterogeneous disorder. It is characterized by impaired social abilities, disordered language, isolated areas of interest, and repetitive behaviors. Evidence suggested that the neuropathology of ASD is widely distributed, involving epigenetic regulation in the brain. MiRNAs are a group of endogenous non-coding RNAs that play a critical role in neurodevelopment, neuroplasticity, and other fundamental neurobiological processes. To study miRNA profiling in Autism spectrum disorder in China, we performed miRNA microarray followed quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Here, we describe detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO): GSE67979.
Collapse
|
16
|
Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, Zhuang W, Tang B, Xia K, Jiang H. Investigation of Gene Regulatory Networks Associated with Autism Spectrum Disorder Based on MiRNA Expression in China. PLoS One 2015; 10:e0129052. [PMID: 26061495 PMCID: PMC4462583 DOI: 10.1371/journal.pone.0129052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/03/2015] [Indexed: 11/25/2022] Open
Abstract
Autism spectrum disorder (ASD) comprise a group of neurodevelopmental disorders characterized by deficits in social and communication capacities and repetitive behaviors. Increasing neuroscientific evidence indicates that the neuropathology of ASD is widespread and involves epigenetic regulation in the brain. Differentially expressed miRNAs in the peripheral blood from autism patients were identified by high-throughput miRNA microarray analyses. Five of these miRNAs were confirmed through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. A search for candidate target genes of the five confirmed miRNAs was performed through a Kyoto encyclopedia of genes and genomes (KEGG) biological pathways and Gene Ontology enrichment analysis of gene function to identify gene regulatory networks. To the best of our knowledge, this study provides the first global miRNA expression profile of ASD in China. The differentially expressed miR-34b may potentially explain the higher percentage of male ASD patients, and the aberrantly expressed miR-103a-3p may contribute to the abnormal ubiquitin-mediated proteolysis observed in ASD.
Collapse
Affiliation(s)
- Fengzhen Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Department of Neurology at University of South China, The First People’s Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R. China
- Institute of Translational Medicine at University of South China, The First People’s Hospital of Chenzhou, Chenzhou, Hunan, 423000, P. R. China
| | - Zhe Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Jiada Li
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
| | - Zhengmao Hu
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Hunan, 410083, P. R. China
- Hunan Engineering Laboratory for Advanced Control and Intelligent Automation, Hunan, 410083, P. R. China
| | - Wei Zhuang
- Department of Thoracic surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kun Xia
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan,410078, P. R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Kaur K, Simon AF, Chauhan V, Chauhan A. Effect of bisphenol A on Drosophila melanogaster behavior – A new model for the studies on neurodevelopmental disorders. Behav Brain Res 2015; 284:77-84. [DOI: 10.1016/j.bbr.2015.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
|
18
|
Ferretti CJ, Hollander E. The Role of Inflammation in Autism Spectrum Disorder. CURRENT TOPICS IN NEUROTOXICITY 2015. [DOI: 10.1007/978-3-319-13602-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Denes A, Miyan JA. Brain-immune interactions in health and disease. Front Neurosci 2014; 8:382. [PMID: 25520609 PMCID: PMC4253740 DOI: 10.3389/fnins.2014.00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/09/2014] [Indexed: 01/09/2023] Open
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester Manchester, UK ; Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Budapest, Hungary
| | - Jaleel A Miyan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
20
|
Signorini C, De Felice C, Leoncini S, Durand T, Galano JM, Cortelazzo A, Zollo G, Guerranti R, Gonnelli S, Caffarelli C, Rossi M, Pecorelli A, Valacchi G, Ciccoli L, Hayek J. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids 2014; 91:183-93. [PMID: 25240461 DOI: 10.1016/j.plefa.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023]
Abstract
This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, I-53100 Siena, Italy.
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Policlinico S.M. alle Scotte, Viale M. Bracci 1, I-53100 Siena, Italy.
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, I-53100 Siena, Italy; Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, UM I, UM II, ENSCM, BP 14491 34093 Montpellier, Cedex 5, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, UM I, UM II, ENSCM, BP 14491 34093 Montpellier, Cedex 5, France
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy; Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, I-53100 Siena, Italy; Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, I-53100 Siena, Italy
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, I-53100 Siena, Italy
| | - Marcello Rossi
- Respiratory Pathophysiology and Rehabilitation Unit, University Hospital, AOUS, Viale M. Bracci 16, 53100 Siena, Italy
| | - Alessandra Pecorelli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, I-53100 Siena, Italy; Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| | - Giuseppe Valacchi
- Department of Life Science and Biotechnologies, University of Ferrara, I-44121 Ferrara, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, I-53100 Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital (AOUS), I-53100 Siena, Italy
| |
Collapse
|
21
|
Groer MW, Luciano AA, Dishaw LJ, Ashmeade TL, Miller E, Gilbert JA. Development of the preterm infant gut microbiome: a research priority. MICROBIOME 2014; 2:38. [PMID: 25332768 PMCID: PMC4203464 DOI: 10.1186/2049-2618-2-38] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/30/2014] [Indexed: 05/12/2023]
Abstract
The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiome due to multiple factors, including physiological immaturity and prenatal/postnatal influences that disrupt the development of a normal gut flora. However, little is known about the developmental succession of the microbiota in preterm infants as they grow and mature. This review provides a synthesis of our understanding of the normal development of the infant gut microbiome and contrasts this with dysbiotic development in the VLBW infant. The role of human milk in normal gut microbial development is emphasized, along with the role of the gut microbiome in immune development and gastroenteric health. Current research provides evidence that the gut microbiome interacts extensively with many physiological systems and metabolic processes in the developing infant. However, to the best of our knowledge, there are currently no studies prospectively mapping the gut microbiome of VLBW infants through early childhood. This knowledge gap must be filled to inform a healthcare system that can provide for the growth, health, and development of VLBW infants. The paper concludes with speculation about how the VLBW infants' gut microbiome might function through host-microbe interactions to contribute to the sequelae of preterm birth, including its influence on growth, development, and general health of the infant host.
Collapse
Affiliation(s)
- Maureen W Groer
- University of South Florida College of Nursing, 12910 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Angel A Luciano
- Department of Pediatrics, Division of Neonatology, Morsani College of Medicine, University of South Florida, Tampa General Cir, Tampa, FL 33606, USA
| | - Larry J Dishaw
- Department of Pediatrics, Morsani College of Medicine, ACH Children’s Research Institute, USF, 140 7th Avenue South, St. Petersburg, FL 33701, USA
| | - Terri L Ashmeade
- Department of Pediatrics, Division of Neonatology, Morsani College of Medicine, University of South Florida, Tampa General Cir, Tampa, FL 33606, USA
| | - Elizabeth Miller
- Department of Anthropology, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33620, USA
| | - Jack A Gilbert
- Institute for Genomics and Systems Biology, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Ecology and Evolution, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|