1
|
Kolay J, Zhang P, Zhou X, Wan Z, Chieng A, Wang S. Ligand Binding-Induced Cellular Membrane Deformation is Correlated with the Changes in Membrane Stiffness. J Phys Chem B 2023; 127:9943-9953. [PMID: 37963180 PMCID: PMC10763494 DOI: 10.1021/acs.jpcb.3c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Study interaction between ligands and protein receptors is a key step for biomarker research and drug discovery. In situ measurement of cell surface membrane protein binding on whole cells eliminates the cost and pitfalls associated with membrane protein purification. Ligand binding to membrane protein was recently found to induce nanometer-scale cell membrane deformations, which can be monitored with real-time optical imaging to quantify ligand/protein binding kinetics. However, the insight into this phenomenon has still not been fully understood. We hypothesize that ligand binding can change membrane stiffness, which induces membrane deformation. To investigate this, cell height and membrane stiffness changes upon ligand binding are measured using atomic force microscopy (AFM). Wheat germ agglutinin (WGA) is used as a model ligand that binds to the cell surface glycoprotein. The changes in cell membrane stiffness and cell height upon ligand bindings are determined for three different cell lines (human A431, HeLa, and rat RBL-2H3) on two different substrates. AFM results show that cells become stiffer with increased height after WGA modification for all cases studied. The increase in cell membrane stiffness is further confirmed by plasmonic scattering microscopy, which shows an increased cell spring constant upon WGA binding. Therefore, this study provides direct experimental evidence that the membrane stiffness changes are directly correlated with ligand binding-induced cell membrane deformation.
Collapse
Affiliation(s)
- Jayeeta Kolay
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
| | - Pengfei Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
| | - Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Electrical, Energy and Computer Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Andy Chieng
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
2
|
Li Z, Fang F, Li Y, Lv X, Zheng R, Jiao P, Wang Y, Zhu G, Jin Z, Xu X, Qiu Y, Zhang G, Li Z, Liu Z, Zhang L. Carbazole and tetrahydro-carboline derivatives as dopamine D 3 receptor antagonists with the multiple antipsychotic-like properties. Acta Pharm Sin B 2023; 13:4553-4577. [PMID: 37969740 PMCID: PMC10638516 DOI: 10.1016/j.apsb.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 11/17/2023] Open
Abstract
Dopamine D3 receptor (D3R) is implicated in multiple psychotic symptoms. Increasing the D3R selectivity over dopamine D2 receptor (D2R) would facilitate the antipsychotic treatments. Herein, novel carbazole and tetrahydro-carboline derivatives were reported as D3R selective ligands. Through a structure-based virtual screen, ZLG-25 (D3R Ki = 685 nmol/L; D2R Ki > 10,000 nmol/L) was identified as a novel D3R selective bitopic ligand with a carbazole scaffold. Scaffolds hopping led to the discovery of novel D3R-selective analogs with tetrahydro-β-carboline or tetrahydro-γ-carboline core. Further functional studies showed that most derivatives acted as hD3R-selective antagonists. Several lead compounds could dose-dependently inhibit the MK-801-induced hyperactivity. Additional investigation revealed that 23j and 36b could decrease the apomorphine-induced climbing without cataleptic reaction. Furthermore, 36b demonstrated unusual antidepressant-like activity in the forced swimming tests and the tail suspension tests, and alleviated the MK-801-induced disruption of novel object recognition in mice. Additionally, preliminary studies confirmed the favorable PK/PD profiles, no weight gain and limited serum prolactin levels in mice. These results revealed that 36b provided potential opportunities to new antipsychotic drugs with the multiple antipsychotic-like properties.
Collapse
Affiliation(s)
- Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fan Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yiyan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuehui Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruqiu Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peili Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guiwang Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zefang Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou 221116, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Asghar J, Latif L, Alexander SPH, Kendall DA. Development of a novel cell-based, In-Cell Western/ERK assay system for the high-throughput screening of agonists acting on the delta-opioid receptor. Front Pharmacol 2022; 13:933356. [PMID: 36225576 PMCID: PMC9549385 DOI: 10.3389/fphar.2022.933356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extracellular signal-regulated kinases (ERKs) are important signaling mediators in mammalian cells and, as a result, one of the major areas of research focus. The detection and quantification of ERK phosphorylation as an index of activation is normally conducted using immunoblotting, which does not allow high-throughput drug screening. Plate-based immunocytochemical assays provide a cheaper and relatively high-throughput alternative method for quantifying ERK phosphorylation. Here, we present optimization steps aimed to increase assay sensitivity and reduce variance and cost using the LI-COR In-Cell Western (I-CW) system in a recombinant CHO-K1 cell line, over-expressing the human delta-opioid receptor (hDOPr) as a model.Methods: Cells cultured in 96-well microassay plates were stimulated with three standard/selective DOPr agonists (SNC80, ADL5859, and DADLE) and a novel selective DOPr agonist (PN6047) to elicit a phospho-ERK response as an index of activation. A number of experimental conditions were investigated during the assay development.Key results: Preliminary experiments revealed a clearly visible edge-effect which significantly increased assay variance across the plate and which was reduced by pre-incubation for 30 min at room temperature. ERK phosphorylation was detectable as early as 1 min after agonist addition, with a distinct peak at 3–5 min. Optimization of the cell seeding densities showed that 25,000 cells per well have the lowest basal phospho-ERK response and an optimal agonist ERK1/2 signal. Pre-incubation with apyrase (an ATPase) did not reduce the basal or agonist responses. All agonists produced concentration-dependent increases in phospho-ERK activation, and pertussis toxin was able to attenuate these ERK responses. Naltrindole, which is a selective DOPr antagonist, was able to antagonize the DOPr-mediated ERK activation of the ligands.Conclusion: We have developed an optimization protocol and highlighted a number of considerations when performing this high-throughput fluorescence immunocytochemical (ICC) assay measuring ERK phosphorylation in the human DOPr. The optimized protocol was found to be a more conducive option for the screening of delta agonists. This provides a basis for additional assay development to investigate opioid pharmacology. This protocol should be widely applicable for measuring ERK phosphorylation in any cell line and investigating other protein targets in GPCR drug discovery.
Collapse
Affiliation(s)
- Junaid Asghar
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Junaid Asghar,
| | - Liaque Latif
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
| | - Stephen P. H. Alexander
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
| | - David A. Kendall
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Yao B, Yang Y, Yu N, Tao N, Wang D, Wang S, Zhang F. Label-Free Quantification of Molecular Interaction in Live Red Blood Cells by Tracking Nanometer Scale Membrane Fluctuations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201623. [PMID: 35717672 PMCID: PMC9283308 DOI: 10.1002/smll.202201623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Molecular interactions in live cells play an important role in both cellular functions and drug discovery. Current methods for measuring binding kinetics involve extracting the membrane protein and labeling, while the in situ quantification of molecular interaction with surface plasmon resonance (SPR) imaging mainly worked with fixed cells due to the micro-motion related noises of live cells. Here, an optical imaging method is presented to measure the molecular interaction with live red blood cells by tracking the nanometer membrane fluctuations. The membrane fluctuation dynamics are measured by tracking the membrane displacement during glycoprotein interaction. The data are analyzed with a thermodynamic model to determine the elastic properties of the cell observing reduced membrane fluctuations under fixatives, indicating cell fixations affect membrane mechanical properties. The binding kinetics of glycoprotein to several lectins are obtained by tracking the membrane fluctuation amplitude changes on single live cells. The binding kinetics and strength of different lectins are quite different, indicating the glycoproteins expression heterogeneity in single cells. It is anticipated that the method will contribute to the understanding of mechanisms of cell interaction and communication, and have potential applications in the mechanical assessment of cancer or other diseases at the single-cell level, and screening of membrane protein targeting drugs.
Collapse
Affiliation(s)
- Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yunze Yang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Nanxi Yu
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Di Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Intelligent Perception Research Institute, Zhejiang Laboratory, Hangzhou 311100, PR China
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
6
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
7
|
Curtailing FGF19's mitogenicity by suppressing its receptor dimerization ability. Proc Natl Acad Sci U S A 2020; 117:29025-29034. [PMID: 33144503 DOI: 10.1073/pnas.2010984117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As a physiological regulator of bile acid homeostasis, FGF19 is also a potent insulin sensitizer capable of normalizing plasma glucose concentration, improving lipid profile, ameliorating fatty liver disease, and causing weight loss in both diabetic and diet-induced obesity mice. There is therefore a major interest in developing FGF19 as a therapeutic agent for treating type 2 diabetes and cholestatic liver disease. However, the known tumorigenic risk associated with prolonged FGF19 administration is a major hurdle in realizing its clinical potential. Here, we show that nonmitogenic FGF19 variants that retain the full beneficial glucose-lowering and bile acid regulatory activities of WT FGF19 (FGF19WT) can be engineered by diminishing FGF19's ability to induce dimerization of its cognate FGF receptors (FGFR). As proof of principle, we generated three such variants, each with a partial defect in binding affinity to FGFR (FGF19ΔFGFR) and its coreceptors, i.e., βklotho (FGF19ΔKLB) or heparan sulfate (FGF19ΔHBS). Pharmacological assays in WT and db/db mice confirmed that these variants incur a dramatic loss in mitogenic activity, yet are indistinguishable from FGF19WT in eliciting glycemic control and regulating bile acid synthesis. This approach provides a robust framework for the development of safer and more efficacious FGF19 analogs.
Collapse
|
8
|
Zindel D, Vol C, Lecha O, Bequignon I, Bilgic M, Vereecke M, Charrier-Savournin F, Romier M, Trinquet E, Pin JP, Pannequin J, Roux T, Dupuis E, Prézeau L. HTRF ® Total and Phospho-YAP (Ser127) Cellular Assays. Methods Mol Biol 2019; 1893:153-166. [PMID: 30565133 DOI: 10.1007/978-1-4939-8910-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The YAP protein is a co-transcription factor increasing the expression of genes involved in cell proliferation and repressing the expression of genes important for cell differentiation and apoptosis. It is regulated by several inputs, like the Hippo pathway, through the action of kinases that phosphorylate YAP on several residues. The level of phosphorylation of the residues serine 127 (S127) of YAP is generally assessed in cellular models, native tissues, and organs, as a marker of YAP activity and location, and is regulated by numerous partners. This phosphorylation event is classically detected using a western blot technical approach. Here, we describe a novel approach to detect both the relative amount of total YAP (T-YAP assay) and the phosphorylation of the residue S127 of YAP (S127-P-YAP assay) using a HTRF®-based method. This easy-to-run method can easily be miniaturized and allows for a high-throughput analysis in 96/384-well plate format, requiring less cellular material and being more rapid than other approaches.
Collapse
Affiliation(s)
- Diana Zindel
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Claire Vol
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Odile Lecha
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Merve Bilgic
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang F, Jing W, Hunt A, Yu H, Yang Y, Wang S, Chen HY, Tao N. Label-Free Quantification of Small-Molecule Binding to Membrane Proteins on Single Cells by Tracking Nanometer-Scale Cellular Membrane Deformation. ACS NANO 2018; 12:2056-2064. [PMID: 29397682 PMCID: PMC5851003 DOI: 10.1021/acsnano.8b00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Measuring molecular binding to membrane proteins is critical for understanding cellular functions, validating biomarkers, and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small-molecule binding to membrane proteins in their native cellular environment. Here we show that the binding of both large and small molecules to membrane proteins can be quantified on single cells by trapping single cells with a microfluidic device and detecting binding-induced cellular membrane deformation on the nanometer scale with label-free optical imaging. We develop a thermodynamic model to describe the binding-induced membrane deformation, validate the model by examining the dependence of membrane deformation on cell stiffness, membrane protein expression level, and binding affinity, and study four major types of membrane proteins, including glycoproteins, ion channels, G-protein coupled receptors, and tyrosine kinase receptors. The single-cell detection capability reveals the importance of local membrane environment on molecular binding and variability in the binding kinetics of different cell lines and heterogeneity of different cells within the same cell line.
Collapse
Affiliation(s)
- Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Wenwen Jing
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ashley Hunt
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hui Yu
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Yunze Yang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Shaopeng Wang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Nongjian Tao
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
10
|
Schenk LK, Möller-Kerutt A, Klosowski R, Wolters D, Schaffner-Reckinger E, Weide T, Pavenstädt H, Vollenbröker B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes. FASEB J 2017; 31:5019-5035. [PMID: 28768720 DOI: 10.1096/fj.201700142r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/17/2017] [Indexed: 02/02/2023]
Abstract
Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.
Collapse
Affiliation(s)
- Laura K Schenk
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Annika Möller-Kerutt
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Rafael Klosowski
- Analytische Chemie, Biomolekulare Massenspektrometrie, Ruhr-Universität Bochum, Bochum, Germany
| | - Dirk Wolters
- Analytische Chemie, Biomolekulare Massenspektrometrie, Ruhr-Universität Bochum, Bochum, Germany
| | - Elisabeth Schaffner-Reckinger
- Laboratory of Cytoskeleton and Cell Plasticity, Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Weide
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Hermann Pavenstädt
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany
| | - Beate Vollenbröker
- Medizinischen Klinik und Poliklinik D, Universitätsklinikum Münster, Munster, Germany;
| |
Collapse
|
11
|
Liu X, Dong M, Qi H, Gao Q, Zhang C. Electrogenerated Chemiluminescence Bioassay of Two Protein Kinases Incorporating Peptide Phosphorylation and Versatile Probe. Anal Chem 2016; 88:8720-7. [DOI: 10.1021/acs.analchem.6b02070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xia Liu
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Manman Dong
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Honglan Qi
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Qiang Gao
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| |
Collapse
|
12
|
Farino ZJ, Morgenstern TJ, Vallaghe J, Gregor N, Donthamsetti P, Harris PE, Pierre N, Freyberg R, Charrier-Savournin F, Javitch JA, Freyberg Z. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence. PLoS One 2016; 11:e0148684. [PMID: 26849707 PMCID: PMC4743966 DOI: 10.1371/journal.pone.0148684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 11/29/2022] Open
Abstract
Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment.
Collapse
Affiliation(s)
- Zachary J. Farino
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
| | - Travis J. Morgenstern
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
| | | | | | - Prashant Donthamsetti
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Paul E. Harris
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | | | - Robin Freyberg
- Department of Psychology, Stern College for Women, Yeshiva University, New York, New York, United States of America
| | | | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
| | - Zachary Freyberg
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abdulrahman AO, Ismael MA, Al-Hosaini K, Rame C, Al-Senaidy AM, Dupont J, Ayoub MA. Differential Effects of Camel Milk on Insulin Receptor Signaling - Toward Understanding the Insulin-Like Properties of Camel Milk. Front Endocrinol (Lausanne) 2016; 7:4. [PMID: 26858689 PMCID: PMC4728290 DOI: 10.3389/fendo.2016.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/13/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.
Collapse
Affiliation(s)
| | - Mohammad A. Ismael
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khaled Al-Hosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Christelle Rame
- UMR7247, CNRS, Nouzilly, France
- Université François-Rabelais, Tours, France
- L’Institut Français du Cheval et de l’Équitation, Nouzilly, France
| | | | - Joëlle Dupont
- UMR7247, CNRS, Nouzilly, France
- Université François-Rabelais, Tours, France
- L’Institut Français du Cheval et de l’Équitation, Nouzilly, France
| | - Mohammed Akli Ayoub
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- UMR7247, CNRS, Nouzilly, France
- Université François-Rabelais, Tours, France
- L’Institut Français du Cheval et de l’Équitation, Nouzilly, France
- UMR85, Biologie et Bioinformatique des Systèmes de Signalisation Group, INRA, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- LE STUDIUM Loire Valley Institute for Advanced Studies, Orléans, France
- *Correspondence: Mohammed Akli Ayoub,
| |
Collapse
|
14
|
Abstract
Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.
| |
Collapse
|