2
|
Hayes ET, Hassan M, Lakomy O, Filzen R, Armouti M, Foretz M, Tsumaki N, Takemori H, Stocco C. SIK2 and SIK3 Differentially Regulate Mouse Granulosa Cell Response to Exogenous Gonadotropins In Vivo. Endocrinology 2024; 165:bqae107. [PMID: 39158086 PMCID: PMC11362621 DOI: 10.1210/endocr/bqae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Salt-inducible kinases (SIKs), a family of serine/threonine kinases, were found to be critical determinants of female fertility. SIK2 silencing results in increased ovulatory response to gonadotropins. In contrast, SIK3 knockout results in infertility, gonadotropin insensitivity, and ovaries devoid of antral and preovulatory follicles. This study hypothesizes that SIK2 and SIK3 differentially regulate follicle growth and fertility via contrasting actions in the granulosa cells (GCs), the somatic cells of the follicle. Therefore, SIK2 or SIK3 GC-specific knockdown (SIK2GCKD and SIK3GCKD, respectively) mice were generated by crossing SIK floxed mice with Cyp19a1pII-Cre mice. Fertility studies revealed that pup accumulation over 6 months and the average litter size of SIK2GCKD mice were similar to controls, although in SIK3GCKD mice were significantly lower compared to controls. Compared to controls, gonadotropin stimulation of prepubertal SIK2GCKD mice resulted in significantly higher serum estradiol levels, whereas SIK3GCKD mice produced significantly less estradiol. Cyp11a1, Cyp19a1, and StAR were significantly increased in the GCs of gonadotropin-stimulated SIK2GCKD mice. However, Cyp11a1 and StAR remained significantly lower than controls in SIK3GCKD mice. Interestingly, Cyp19a1 stimulation in SIK3GCKD was not statistically different compared to controls. Superovulation resulted in SIK2GCKD mice ovulating significantly more oocytes, whereas SIK3GCKD mice ovulated significantly fewer oocytes than controls. Remarkably, SIK3GCKD superovulated ovaries contained significantly more preantral follicles than controls. SIK3GCKD ovaries contained significantly more apoptotic cells and fewer proliferating cells than controls. These data point to the differential regulation of GC function and follicle development by SIK2 and SIK3 and supports the therapeutic potential of targeting these kinases for treating infertility or developing new contraceptives.
Collapse
Affiliation(s)
- Emily T Hayes
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mariam Hassan
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Oliwia Lakomy
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rachael Filzen
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marah Armouti
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, The University of Osaka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Takemori
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Carlos Stocco
- Department of Physiology and Biophysics, School of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Duan J, Xu P, Zhang H, Luan X, Yang J, He X, Mao C, Shen DD, Ji Y, Cheng X, Jiang H, Jiang Y, Zhang S, Zhang Y, Xu HE. Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor. Nat Commun 2023; 14:519. [PMID: 36720854 PMCID: PMC9889800 DOI: 10.1038/s41467-023-36170-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
Follicle stimulating hormone (FSH) is an essential glycoprotein hormone for human reproduction, which functions are mediated by a G protein-coupled receptor, FSHR. Aberrant FSH-FSHR signaling causes infertility and ovarian hyperstimulation syndrome. Here we report cryo-EM structures of FSHR in both inactive and active states, with the active structure bound to FSH and an allosteric agonist compound 21 f. The structures of FSHR are similar to other glycoprotein hormone receptors, highlighting a conserved activation mechanism of hormone-induced receptor activation. Compound 21 f formed extensive interactions with the TMD to directly activate FSHR. Importantly, the unique residue H6157.42 in FSHR plays an essential role in determining FSHR selectivity for various allosteric agonists. Together, our structures provide a molecular basis of FSH and small allosteric agonist-mediated FSHR activation, which could inspire the design of FSHR-targeted drugs for the treatment of infertility and controlled ovarian stimulation for in vitro fertilization.
Collapse
Affiliation(s)
- Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peiyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, Zhejiang, China
| | - Xiaodong Luan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,School of medicine, Tsinghua university, Beijing, China.,Tsinghua-Peking Center for life science, Tsinghua university, Beijing, China
| | - Jiaqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, Zhejiang, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, Zhejiang, China
| | - Yujie Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Lingang Laboratory, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yi Jiang
- Lingang Laboratory, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China. .,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China. .,School of medicine, Tsinghua university, Beijing, China. .,Tsinghua-Peking Center for life science, Tsinghua university, Beijing, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou, Zhejiang, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
4
|
Abstract
Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future research.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
5
|
Dias JA, Ulloa-Aguirre A. New Human Follitropin Preparations: How Glycan Structural Differences May Affect Biochemical and Biological Function and Clinical Effect. Front Endocrinol (Lausanne) 2021; 12:636038. [PMID: 33815292 PMCID: PMC8018285 DOI: 10.3389/fendo.2021.636038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
It is well accepted that pituitary follitropin is secreted into the circulation as a mixture of variants, which differ not in primary structure but rather at the level of glycosylation. These glycosidic forms vary in the number of glycosylation sites filled, complexity of glycosidic chains, and sialylation and sulfation. It is generally agreed that high sialylation, 2,3 sialic acid capping of terminal N-acetyl galactosamine or galactose leads to longer circulating half-life, by blocking binding of asialoglycoprotein receptor (ASGPR) in the liver. In contrast, 2,6 sialic acid found in humans does not prevent recognition of galactose and N-acetyl galactosamine by ASGPR. Few studies on clinical outcomes comparing differences in sialylation of follitropin found in commercially available preparations are available. Thus, there is a clear need for a consortium of open data to address this unmet need. Recently, FSH glycosylation, primarily on the β-subunit, which varies as women age, has emerged as a key modifier of follitropin action, with profound biological effects in vivo in animal models. To date, limited information of recombinant follitropin hormone preparations is available. Thus, most of the studies with FSH that is well characterized biochemically have been done in vitro, with engineered non gonadal host cells bearing recombinant receptors or in animal models. Since limited studies in human granulosa cells are available, a question is whether structural differences in glycosylation in commercially available follitropin affects biological function and clinical effect in humans. The presence of fucose, for example, has not been studied greatly even though, in the case of antibody therapy it has been shown to have a large effect on antibody targeting. This review on glycosidic variability of follitropin from the biochemical/structural point of view reflects on this question and presents an assessment in the context of available published data. If clinical differences are to be expected or not, the readers will have a better understanding of the evidence for and limitations of such expectations.
Collapse
Affiliation(s)
- James A. Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
- *Correspondence: James A. Dias,
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición SZ., Mexico City, Mexico
| |
Collapse
|
6
|
Ząbczyńska M, Kozłowska K, Pocheć E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int J Mol Sci 2018; 19:E2792. [PMID: 30227620 PMCID: PMC6163523 DOI: 10.3390/ijms19092792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/08/2023] Open
Abstract
The key proteins responsible for hormone synthesis in the thyroid are glycosylated. Oligosaccharides strongly affect the function of glycosylated proteins. Both thyroid-stimulating hormone (TSH) secreted by the pituitary gland and TSH receptors on the surface of thyrocytes contain N-glycans, which are crucial to their proper activity. Thyroglobulin (Tg), the protein backbone for synthesis of thyroid hormones, is a heavily N-glycosylated protein, containing 20 putative N-glycosylated sites. N-oligosaccharides play a role in Tg transport into the follicular lumen, where thyroid hormones are produced, and into thyrocytes, where hyposialylated Tg is degraded. N-glycans of the cell membrane transporters sodium/iodide symporter and pendrin are necessary for iodide transport. Some changes in glycosylation result in abnormal activity of the thyroid and alteration of the metabolic clearance rate of hormones. Alteration of glycan structures is a pathological process related to the progression of chronic diseases such as thyroid cancers and autoimmunity. Thyroid carcinogenesis is accompanied by changes in sialylation and fucosylation, β1,6-branching of glycans, the content and structure of poly-LacNAc chains, as well as O-GlcNAcylation, while in thyroid autoimmunity the main processes affected are sialylation and fucosylation. The glycobiology of the thyroid gland is an intensively studied field of research, providing new data helpful in understanding the role of the sugar component in thyroid protein biology and disorders.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Kamila Kozłowska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|