1
|
Engin A. The Mechanism of Leptin Resistance in Obesity and Therapeutic Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:463-487. [PMID: 39287862 DOI: 10.1007/978-3-031-63657-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Leptin resistance is induced via leptin signaling blockade by chronic overstimulation of the leptin receptor and intracellular signaling defect or increased hypothalamic inflammation and suppressor of cytokine signaling (SOCS)-3 expression. High-fat diet triggers leptin resistance induced by at least two independent causes: first, the limited ability of peripheral leptin to activate hypothalamic signaling transducers and activators of transcription (STAT) signaling and secondly a signaling defect in leptin-responsive hypothalamic neurons. Central leptin resistance is dependent on decreased leptin transport efficiency across the blood brain barrier (BBB) rather than hypothalamic leptin insensitivity. Since the hypothalamic phosphorylated STAT3 (pSTAT3) represents a sensitive and specific readout of leptin receptor-B signaling, the assessment of pSTAT3 levels is the gold standard. Hypertriglyceridemia is one of important factors to inhibit the transport of leptin across BBB in obesity. Mismatch between high leptin and the amount of leptin receptor expression in obesity triggers brain leptin resistance via increasing hypothalamic inflammation and SOCS-3 expression. Therapeutic strategies that regulate the passage of leptin to the brain include the development of modifications in the structure of leptin analogues as well as the synthesis of new leptin receptor agonists with increased BBB permeability. In the hyperleptinemic state, polyethylene glycol (PEG)-modified leptin is unable to pass through the BBB. Peripheral histone deacetylase (HDAC) 6 inhibitor, tubastatin, and metformin increase central leptin sensitization. While add-on therapy with anagliptin, metformin and miglitol reduce leptin concentrations, the use of long-acting leptin analogs, and exendin-4 lead to the recovery of leptin sensitivity. Contouring surgery with fat removal, and bariatric surgery independently of the type of surgery performed provide significant improvement in leptin concentrations. Although approaches to correcting leptin resistance have shown some success, no clinically effective application has been developed to date. Due to the impairment of central and peripheral leptin signaling, as well as the extensive integration of leptin-sensitive metabolic pathways with other neurons, the effectiveness of methods used to eliminate leptin resistance is extremely limited.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
2
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
3
|
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V. Obesity as a Risk Factor for Dementia and Alzheimer's Disease: The Role of Leptin. Int J Mol Sci 2022; 23:5202. [PMID: 35563589 PMCID: PMC9099768 DOI: 10.3390/ijms23095202] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a growing worldwide health problem, affecting many people due to excessive saturated fat consumption, lack of exercise, or a sedentary lifestyle. Leptin is an adipokine secreted by adipose tissue that increases in obesity and has central actions not only at the hypothalamic level but also in other regions and nuclei of the central nervous system (CNS) such as the cerebral cortex and hippocampus. These regions express the long form of leptin receptor LepRb, which is the unique leptin receptor capable of transmitting complete leptin signaling, and are the first regions to be affected by chronic neurocognitive deficits, such as mild cognitive impairment (MCI) and Alzheimer's Disease (AD). In this review, we discuss different leptin resistance mechanisms that could be implicated in increasing the risk of developing AD, as leptin resistance is frequently associated with obesity, which is a chronic low-grade inflammatory state, and obesity is considered a risk factor for AD. Key players of leptin resistance are SOCS3, PTP1B, and TCPTP whose signalling is related to inflammation and could be worsened in AD. However, some data are controversial, and it is necessary to further investigate the underlying mechanisms of the AD-causing pathological processes and how altered leptin signalling affects such processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Av. Sánchez Pizjuan 4, 41009 Sevilla, Spain; (J.A.F.-C.); (A.P.-P.); (C.J.-C.); (G.A.); (A.F.-B.)
| |
Collapse
|
4
|
Baba B, Caliskan M, Boyuk G, Hacisevki A. Chemical Chaperone PBA Attenuates ER Stress and Upregulates SOCS3 Expression as a Regulator of Leptin Signaling. BIOCHEMISTRY (MOSCOW) 2021; 86:480-488. [PMID: 33941068 DOI: 10.1134/s0006297921040088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) is very sensitive to the nutritional and energy states of the cells. Disruption of ER homeostasis leads to the accumulation of unfolded/misfolded proteins in the ER lumen, which is defined as ER stress. ER stress triggers the unfolded protein response (UPR). It is suggested that chronic ER stress is associated with obesity and leptin resistance. We investigated the role of ER stress and the effect of the ER stress inhibitor phenylbutyric acid (PBA) of ER stress, in obesity, as well as their impact on leptin signaling. This study involved twenty-four lean and twenty-four leptin-deficient (ob/ob) mice divided into PBA- and vehicle-treated groups. Pancreatic islets were isolated, incubated with leptin for 48 h, and assayed for the expression of CHOP and XBP1s (UPR signaling indicators) and SOCS3 (regulator of leptin signaling) by RT-qPCR. The expression levels of XBP1s and CHOP were markedly increased in the ob/ob controls compared to other groups with and without leptin treatment. No significant differences in the XBP1s and CHOP expression levels were found between the PBA-treated ob/ob and lean mice. SOCS3 expression was significantly upregulated in the PBA-treated ob/ob mice compared to the ob/ob controls after leptin treatment; but no significant difference in the SOCS3 expression was found between the PBA-treated ob/ob and lean mice with and without leptin treatment. Our findings suggested that ER stress plays an important role in the pathology of obesity, while PBA reduces ER stress and may potentially ameliorate leptin signaling.
Collapse
Affiliation(s)
- Burcu Baba
- Department of Medical Biochemistry, Faculty of Medicine, Yuksek Ihtisas University, Ankara, 06520, Turkey.
| | - Mursel Caliskan
- Department of Genetic, Gaziosmanpaşa Hospital, Yeni Yuzyil University, Istanbul, 34245, Turkey.
| | - Gulbahar Boyuk
- Department of Physiology, Faculty of Medicine, Ankara Medipol University, Ankara, 06050, Turkey.
| | - Aysun Hacisevki
- Department of Biochemistry, Faculty of Pharmacy, Gazi University, Ankara, 06100, Turkey.
| |
Collapse
|
5
|
Li M, Fang H, Hu J. Apelin‑13 ameliorates metabolic and cardiovascular disorders in a rat model of type 2 diabetes with a high‑fat diet. Mol Med Rep 2018; 18:5784-5790. [PMID: 30387843 DOI: 10.3892/mmr.2018.9607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/19/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Meng Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huijuan Fang
- Department of Cadre Ward, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Jian Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
6
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
7
|
Waragai M, Ho G, Takamatsu Y, Sekiyama K, Sugama S, Takenouchi T, Masliah E, Hashimoto M. Importance of adiponectin activity in the pathogenesis of Alzheimer's disease. Ann Clin Transl Neurol 2017; 4:591-600. [PMID: 28812049 PMCID: PMC5553221 DOI: 10.1002/acn3.436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023] Open
Abstract
A recent study suggested that insulin resistance may play a central role in the pathogenesis of Alzheimer's disease (AD). In this regard, it is of note that upregulation of plasma adiponectin (APN), a benign adipokine that sensitizes the insulin receptor signaling pathway and suppresses inflammation, has recently been associated with the severities of amyloid deposits and cognitive deficits in the elderly, suggesting that APN may enhance the risk of AD. These results are unanticipated because AD has been linked to type II diabetes and other metabolic disorders in which hypoadiponectinemia has been firmly established, and because APN ameliorated neuropathological features in a mouse model of neurodegeneration. Therefore, the objective of this study is to discuss the possible mechanisms underlying the biological actions of APN in the context of AD. Given that insulin receptor signaling is required for normal function of the nervous system, we predict that APN may be upregulated to compensate for compromised activity of the insulin receptor signaling pathway. However, increased APN might be sequestered by tau in the brain, leading to neurotoxic protein aggregation in AD. Alternatively, misfolding of APN may result in downregulation of the insulin/APN signal transduction network, leading to decreased neuroprotective and neurotrophic activities. Thus, it is possible that both ‘gain of function’ and ‘loss of function’ of APN may underlie synaptic dysfunction and neuronal cell death in AD. Such a unique biological mechanism underlying APN function in AD may require a novel therapeutic strategy that is distinct from previous treatment for metabolic disorders.
Collapse
Affiliation(s)
- Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute Poway California 92064
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Kazunari Sekiyama
- Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Shuei Sugama
- Department of Physiology Nippon Medical School Tokyo113-8506 Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences National Agriculture and Food Research Organization TsukubaIbaraki 305-8634 Japan
| | - Eliezer Masliah
- Department of Neuroscience National Institute on Aging Bethesda Maryland 20892
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| |
Collapse
|
8
|
Martins FF, Aguila MB, Mandarim-de-Lacerda CA. Impaired steroidogenesis in the testis of leptin-deficient mice (ob/ob -/-). Acta Histochem 2017; 119:508-515. [PMID: 28506466 DOI: 10.1016/j.acthis.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/12/2017] [Accepted: 05/08/2017] [Indexed: 01/17/2023]
Abstract
The obesity and its comorbidities, including resistance to leptin, impacts the reproductive function. Testes express leptin receptors in the germ cells and Leydig cells. Then, leptin-deficient animals are obese and infertile. We aimed to evaluate the structure and steroidogenic pathway of the testis of deficient leptin mice. Three months old male C57BL/6 mice (wild-type, WT) and deficient leptin (ob/ob) mice had their testes dissected and prepared for analyses. Compared to the WT group, the ob/ob group showed a greater body mass with smaller testes, and alterations in the germinative epithelium: fewer spermatogonia, spermatocytes, and spermatids. The Sertoli cells and the germ cells showed condensed nuclei and nuclear fragmentation indicating cell death, in agreement with a low expression of the proliferating cell nuclear antigen and a high expression of Caspase3. In the ob/ob group, the sperm was absent in the seminiferous tubules, and the steroidogenic pathway was compromised (low 3Beta hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein). Further, all hormone receptors involved in the testicular function were down expressed (androgen, estrogen, follicle-stimulating, luteinizing, aromatase, and nicotinamide adenine dinucleotide phosphate). In conclusion, the findings indicate significant morphological, hormonal and enzymatic changes in the testis of the ob/ob mice. The shifts in the enzymatic steroidogenic pathway and the enzymes related to spermatic activity support the insights about the failures in the fertility of these animals. The study provides new evidence and contributes to the understanding of how the lack of leptin and obesity might negatively modulate the testicular function leading to infertility.
Collapse
|
9
|
Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier Than Expected? Front Endocrinol (Lausanne) 2017; 8:30. [PMID: 28270795 PMCID: PMC5318964 DOI: 10.3389/fendo.2017.00030] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 12/31/2022] Open
Abstract
Under normal physiological conditions, leptin and the leptin receptor (ObR) regulate the body weight by balancing food intake and energy expenditure. However, this adipocyte-derived hormone also directs peripheral processes, including immunity, reproduction, and bone metabolism. Leptin, therefore, can act as a metabolic switch connecting the body's nutritional status to high energy consuming processes. We provide an extensive overview of current structural insights on the leptin-ObR interface and ObR activation, coupling to signaling pathways and their negative regulation, and leptin functioning under normal and pathophysiological conditions (obesity, autoimmunity, cancer, … ). We also discuss possible cross-talk with other receptor systems on the receptor (extracellular) and signaling cascade (intracellular) levels.
Collapse
Affiliation(s)
- Joris Wauman
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Lennart Zabeau
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Faculty of Medicine and Health Sciences, Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Medical Biotechnology Center, VIB, Ghent, Belgium
- *Correspondence: Jan Tavernier,
| |
Collapse
|
10
|
Engin A. Diet-Induced Obesity and the Mechanism of Leptin Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:381-397. [PMID: 28585208 DOI: 10.1007/978-3-319-48382-5_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin signaling blockade by chronic overstimulation of the leptin receptor or hypothalamic pro-inflammatory responses due to elevated levels of saturated fatty acid can induce leptin resistance by activating negative feedback pathways. Although, long form leptin receptor (Ob-Rb) initiates leptin signaling through more than seven different signal transduction pathways, excessive suppressor of cytokine signaling-3 (SOCS-3) activity is a potential mechanism for the leptin resistance that characterizes human obesity. Because the leptin-responsive metabolic pathways broadly integrate with other neurons to control energy balance, the methods used to counteract the leptin resistance has extremely limited effect. In this chapter, besides the impairment of central and peripheral leptin signaling pathways, limited access of leptin to central nervous system (CNS) through blood-brain barrier, mismatch between high leptin and the amount of leptin receptor expression, contradictory effects of cellular and circulating molecules on leptin signaling, the connection between leptin signaling and endoplasmic reticulum (ER) stress and self-regulation of leptin signaling has been discussed in terms of leptin resistance.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
11
|
Tang JY, Jin P, He Q, Lu LH, Ma JP, Gao WL, Bai HP, Yang J. Naringenin ameliorates hypoxia/reoxygenation-induced endoplasmic reticulum stress-mediated apoptosis in H9c2 myocardial cells: involvement in ATF6, IRE1α and PERK signaling activation. Mol Cell Biochem 2016; 424:111-122. [PMID: 27785700 DOI: 10.1007/s11010-016-2848-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
Naringenin, a flavanone mainly derived from grapes and citrus fruits, has been reported to exhibit cardioprotective effects. Accumulating evidence has confirmed that endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of myocardial ischemia/reperfusion injury and inhibiting ER stress is a potential therapeutic target/strategy in preventing cardiovascular diseases. Herein, the current study was designed to investigate whether naringenin protects H9c2 myocardial cells against hypoxia/reoxygenation (H/R) injury via attenuating ER stress or ER stress-mediated apoptosis. Our results showed that naringenin treatment resulted in obvious increases in the viability of H9c2 cells and the expression of Bcl-2 (anti-apoptotic protein), and decreases in the morphological changes of apoptotic cells, the activity of caspase-3 and the expression of Bax (pro-apoptotic protein) in H/R-treated H9c2 cells, implying the protective effects of naringenin against H/R-induced injury. In addition, naringenin also significantly reversed H/R-induced ER stress as evidenced by the up-regulation of Glucose-regulated protein 78, C/EBP homologous protein and Cleaved caspase-12 proteins. Meanwhile, naringenin remarkably reversed H/R-induced the increases in the expression of cleaved activating transcription factor 6 (ATF6) and phosphorylation levels of phospho-extracellular regulated protein kinases (PERK) and inositol-requiring enzyme-1α (IRE1α) in H9c2 cells. Finally, we found that ATF6 siRNA, PERK siRNA or IRE1α siRNA abolished H/R-induced cytotoxicity and apoptosis in H9c2 cells. In conclusion, these results confirmed that ER stress-mediated apoptosis contributes to the protection effects of naringenin against H/R injury, which is potentially involved in ATF6, IRE1α and PERK signaling activation.
Collapse
Affiliation(s)
- Jia-You Tang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Qing He
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Lin-He Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Ji-Peng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China
| | - Wei-Lun Gao
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China
| | - He-Ping Bai
- Department of Thoracic and Cardiovascular Surgery, The Second Hospital of Yulin, Yulin, 719000, Shanxi, People's Republic of China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, 169 W Changle West Road, Xi'an, 710032, Shanxi, People's Republic of China.
| |
Collapse
|