1
|
Al-Kateb F, Dyab D, Almadani B, Al-Enezi N. Spondyloenchondrodysplasia With Immune Dysregulation, but Without Skeletal Dysplasia, in a Six-Year-Old Boy: A Case Report. Cureus 2024; 16:e60314. [PMID: 38883133 PMCID: PMC11177273 DOI: 10.7759/cureus.60314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Spondyloenchondrodysplasia with immune dysregulation (SPENCDI) is a rare autosomal recessive genetic disorder caused by a homozygous mutation of the ACP5 gene. Spondyloenchondrodysplasia is a type of immune-osseous dysplasia manifesting with skeletal dysplasia, immunologic dysfunction, and neurological manifestations. We report the case of a six-year-old boy with SPENCDI who presented with post-viral illness Coombs-positive hemolytic anemia, thrombocytopenia, and fever, based on which he was diagnosed with Evans syndrome. He was previously diagnosed with spastic diplegia, short stature, and celiac disease. The diagnosis was confirmed with genetic testing which displayed a homozygous frameshift mutation of the ACP5 gene c.549del p.(Gln184Serfs*28). This case report discusses the clinical presentation of SPENCDI and highlights the importance of considering this rare genetic disorder in patients presenting with short stature, immunologic dysregulation, and neurological involvement.
Collapse
Affiliation(s)
| | - Duaa Dyab
- Pediatrics, Alfaisal University College of Medicine, Riyadh, SAU
| | - Basher Almadani
- Pediatrics, Alfaisal University College of Medicine, Riyadh, SAU
| | | |
Collapse
|
2
|
Elhossini RM, Elbendary HM, Rafat K, Ghorab RM, Abdel-Hamid MS. Spondyloenchondrodysplasia in five new patients: identification of three novel ACP5 variants with variable neurological presentations. Mol Genet Genomics 2023; 298:709-720. [PMID: 37010587 PMCID: PMC10133048 DOI: 10.1007/s00438-023-02009-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Spondyloenchondrodysplasia (SPENCD) is an immune-osseous disorder caused by biallelic variants in ACP5 gene and is less commonly associated with neurological abnormalities such as global developmental delay, spasticity and seizures. Herein, we describe five new patients from four unrelated Egyptian families with complex clinical presentations including predominant neurological presentations masking the skeletal and immunological manifestations. All our patients had spasticity with variable associations of motor and mental delay or epilepsy. All except for one patient had bilateral calcification in the basal ganglia. One patient had an associated growth hormone deficiency with fair response to growth hormone therapy (GH) where the height improved from -3.0 SD before GH therapy to -2.35 SD at presentation. Patients had different forms of immune dysregulation. All patients except for one had either cellular immunodeficiency (3 patients) or combined immunodeficiency (1 patient). Whole exome sequencing was performed and revealed four ACP5 variants: c.629C > T (p.Ser210Phe), c.526C > T (p.Arg176Ter), c.742dupC (p.Gln248ProfsTer3) and c.775G > A (p.Gly259Arg). Of them, three variants were not described before. Our study reinforces the striking phenotypic variability associated with SPENCD and expands the mutational spectrum of this rare disorder. Further, it documents the positive response to growth hormone therapy in the studied patient.
Collapse
Affiliation(s)
- Rasha M Elhossini
- Clinical Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt.
| | - Hasnaa M Elbendary
- Clinical Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Karima Rafat
- Clinical Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - Raghda M Ghorab
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, El-Bohous Street, El-Dokki, Cairo, 12622, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Institute of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Raftopoulou S, Rapti A, Karathanasis D, Evangelopoulos ME, Mavragani CP. The role of type I IFN in autoimmune and autoinflammatory diseases with CNS involvement. Front Neurol 2022; 13:1026449. [PMID: 36438941 PMCID: PMC9685560 DOI: 10.3389/fneur.2022.1026449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Type I interferons (IFNs) are major mediators of innate immunity, with well-known antiviral, antiproliferative, and immunomodulatory properties. A growing body of evidence suggests the involvement of type I IFNs in the pathogenesis of central nervous system (CNS) manifestations in the setting of chronic autoimmune and autoinflammatory disorders, while IFN-β has been for years, a well-established therapeutic modality for multiple sclerosis (MS). In the present review, we summarize the current evidence on the mechanisms of type I IFN production by CNS cellular populations as well as its local effects on the CNS. Additionally, the beneficial effects of IFN-β in the pathophysiology of MS are discussed, along with the contributory role of type I IFNs in the pathogenesis of neuropsychiatric lupus erythematosus and type I interferonopathies.
Collapse
Affiliation(s)
- Sylvia Raftopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Rapti
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Karathanasis
- First Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece
| | | | - Clio P. Mavragani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Wu J, Wang M, Jiao Z, Dou B, Li B, Zhang J, Zhang H, Sun Y, Tu X, Kong X, Bai Y. Novel Loss-of-Function Mutations in NPR2 Cause Acromesomelic Dysplasia, Maroteaux Type. Front Genet 2022; 13:823861. [PMID: 35368703 PMCID: PMC8967736 DOI: 10.3389/fgene.2022.823861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acromesomelic dysplasia, Maroteaux type (AMDM) is a rare skeletal dysplasia characterized by severe disproportionate short stature, short hands and feet, normal intelligence, and facial dysmorphism. Homozygous or compound heterozygous mutations in the natriuretic peptide receptor 2 (NPR2) gene produce growth-restricted phenotypes. The current study was designed to identify and characterize NPR2 loss-of-function mutations in patients with AMDM and to explore therapeutic responses to recombinant growth hormone (rhGH). NPR2 was sequenced in two Chinese patients with AMDM via next generation sequencing, and in silico structural analysis or transcript analysis of two novel variants was performed to examine putative protein changes. rhGH treatment was started for patient 1. Three NPR2 mutations were identified in two unrelated cases: two compound heterozygous mutations c.1112G>A p.(Arg371Gln) and c.2887+2T>C in patient 1 and a homozygous mutation c.329G>A p.(Arg110His) in patient 2, yielding distinct phenotypes. RNA extracted from peripheral blood cells of patient 1 showed alternatively spliced transcripts not present in control cells. Homology modeling analyses suggested that the c.1112G>A p.(Arg371Gln) mutation disrupted the binding of NPR-B homodimer to its ligand (C-type natriuretic peptide) in the extracellular domain as a result of global allosteric effects on homodimer formation. Thus, c.2887+2T>C and c.1112G>A p.(Arg371Gln) in NPR2 were loss-of-function mutations. Furthermore, rhGH therapy in patient 1 increased the patient’s height by 0.6SDS over 15 months without adversely affecting the trunk-leg proportion. The short-term growth-promoting effect was equivalent to that reported for idiopathic short stature. Overall, our findings broadened the genotypic spectrum of NPR2 mutations in individuals with AMDM and provided insights into the efficacy of rhGH in these patients.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengru Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouyang Jiao
- Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binghua Dou
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Li
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjiang Zhang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haohao Zhang
- Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Sun
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Ying Bai, ; Xiangdong Kong,
| | - Ying Bai
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Ying Bai, ; Xiangdong Kong,
| |
Collapse
|
5
|
Mohtashami M, Razavi A, Abolhassani H, Aghamohammadi A, Yazdani R. Primary Immunodeficiency and Thrombocytopenia. Int Rev Immunol 2021; 41:135-159. [PMID: 33464134 DOI: 10.1080/08830185.2020.1868454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Primary immunodeficiency (PID) or Inborn errors of immunity (IEI) refers to a heterogeneous group of disorders characterized by immune system impairment. Although patients with IEI manifest highly variable symptoms, the most common clinical manifestations are recurrent infections, autoimmunity and malignancies. Some patients present hematological abnormality including thrombocytopenia due to different pathogenic mechanisms. This review focuses on primary and secondary thrombocytopenia as a complication, which can occur in IEI. Based on the International Union of Immunological Societies phenotypic classification for IEI, the several innate and adaptive immunodeficiency disorders can lead to thrombocytopenia. This review, for the first time, describes manifestation, mechanism and therapeutic modalities for thrombocytopenia in different classes of IEI.
Collapse
Affiliation(s)
- Maryam Mohtashami
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biology Sciences, University of Kharazmi, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Intracranial calcifications in childhood: Part 2. Pediatr Radiol 2020; 50:1448-1475. [PMID: 32642802 DOI: 10.1007/s00247-020-04716-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns-Sayre; and Cockayne syndromes), interferonopathies (Aicardi-Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.
Collapse
|
7
|
Ramesh J, Parthasarathy LK, Janckila AJ, Begum F, Murugan R, Murthy BPSS, El-Mallakh RS, Parthasarathy RN, Venugopal B. Characterisation of ACP5 missense mutations encoding tartrate-resistant acid phosphatase associated with spondyloenchondrodysplasia. PLoS One 2020; 15:e0230052. [PMID: 32214327 PMCID: PMC7098635 DOI: 10.1371/journal.pone.0230052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
Biallelic mutations in ACP5, encoding tartrate-resistant acid phosphatase (TRACP), have recently been identified to cause the inherited immuno-osseous disorder, spondyloenchondrodysplasia (SPENCD). This study was undertaken to characterize the eight reported missense mutations in ACP5 associated with SPENCD on TRACP expression. ACP5 mutant genes were synthesized, transfected into human embryonic kidney (HEK-293) cells and stably expressing cell lines were established. TRACP expression was assessed by cytochemical and immuno-cytochemical staining with a panel of monoclonal antibodies. Analysis of wild (WT) type and eight mutant stable cell lines indicated that all mutants lacked stainable enzyme activity. All ACP5 mutant constructs were translated into intact proteins by HEK-293 cells. The mutant TRACP proteins displayed variable immune reactivity patterns, and all drastically reduced enzymatic activity, revealing that there is no gross inhibition of TRACP biosynthesis by the mutations. But they likely interfere with folding thereby impairing enzyme function. TRACP exists as two isoforms. TRACP 5a is a less active monomeric enzyme (35kD), with the intact loop peptide and TRACP 5b is proteolytically cleaved highly active enzyme encompassing two subunits (23 kD and 16 kD) held together by disulfide bonds. None of the mutant proteins were proteolytically processed into isoform 5b intracellularly, and only three mutants were secreted in significant amounts into the culture medium as intact isoform 5a-like proteins. Analysis of antibody reactivity patterns revealed that T89I and M264K mutant proteins retained some native conformation, whereas all others were in “denatured” or “unfolded” forms. Western blot analysis with intracellular and secreted TRACP proteins also revealed similar observations indicating that mutant T89I is amply secreted as inactive protein. All mutant proteins were attacked by Endo-H sensitive glycans and none could be activated by proteolytic cleavage in vitro. In conclusion, determining the structure-function relationship of the SPENCD mutations in TRACP will expand our understanding of basic mechanisms underlying immune responsiveness and its involvement in dysregulated bone metabolism.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
| | - Latha K. Parthasarathy
- Department of Psychiatry, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Anthony J. Janckila
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, United States of America
| | - Farhana Begum
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
| | - Ramya Murugan
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
| | - Balakumar P. S. S. Murthy
- Department of Vascular and Endovascular Sciences, Tamilnadu Government Multi Super Speciality Hospital, Chennai, India
| | - Rif S. El-Mallakh
- Department of Psychiatry, University of Louisville School of Medicine, Louisville, KY, United States of America
| | - Ranga N. Parthasarathy
- Department of Medical Biochemistry, Dr. ALM-PGIBMS, University of Madras, Madras, India
- Department of Psychiatry, University of Louisville School of Medicine, Louisville, KY, United States of America
- Department of Psychiatry, Molecular Biology and Biochemistry, University of Louisville School of Medicine, Louisville, KY, United States of America
| | | |
Collapse
|