1
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
2
|
Yu C, Chen B, Su H, Yang Y. Long non-coding RNA MIAT serves as a biomarker of fragility fracture and promotes fracture healing. J Orthop Surg Res 2024; 19:343. [PMID: 38849896 PMCID: PMC11162066 DOI: 10.1186/s13018-024-04824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Fragility fracture is common in the elderly. Osteoblast differentiation is essential for bone healing and regeneration. Expression pattern of long non-coding RNA MIAT during fracture healing was examined, and its role in osteoblast differentiation was investigated. METHODS 90 women with simple osteoporosis and 90 women with fragility fractures were included. Another 90 age-matched women were set as the control group. mRNA levels were tested using RT-qPCR. Cell viability was detected via CCK-8, and osteoblastic biomarkers, including ALP, OCN, Collagen I, and RUNX2 were tested via ELISA. The downstream miRNAs and genes targeted by MIAT were predicted by bioinformatics analysis, whose functions and pathways were annotated via GO and KEGG analysis. RESULTS Serum MIAT was upregulated in osteoporosis women with high accuracy of diagnostic efficacy. Serum MIAT was even elevated in the fragility fracture group, but decreased in a time manner after operation. MIAT knockdown promoted osteogenic proliferation and differentiation of MC3T3-E1, but the influences were reversed by miR-181a-5p inhibitor. A total of 137 overlapping target genes of miR-181a-5p were predicted based on the miRDB, TargetScan and microT datasets, which were mainly enriched for terms related to signaling pathways regulating pluripotency of stem cells, cellular senescence, and osteoclast differentiation. CONCLUSIONS LncRNA MIAT serves as a promising biomarker for osteoporosis, and promotes osteogenic differentiation via targeting miR-181a-5p.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China
| | - Binbin Chen
- Department of Nephrology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Hui Su
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Yiqun Yang
- Department of Orthopedics, Liaocheng People's Hospital, No. 67, West Dongchang Road, Liaocheng, 252000, China.
| |
Collapse
|
3
|
Baniasadi M, Talebi S, Mokhtari K, Zabolian AH, Khosroshahi EM, Entezari M, Dehkhoda F, Nabavi N, Hashemi M. Role of non-coding RNAs in osteoporosis. Pathol Res Pract 2024; 253:155036. [PMID: 38134836 DOI: 10.1016/j.prp.2023.155036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Osteoporosis, a prevalent bone disorder influenced by genetic and environmental elements, significantly increases the likelihood of fractures and bone weakness, greatly affecting the lives of those afflicted. Yet, the exact epigenetic processes behind the onset of osteoporosis are still unclear. Growing research indicates that epigenetic changes could act as vital mediators that connect genetic tendencies and environmental influences, thereby increasing the risk of osteoporosis and bone fractures. Within these epigenetic factors, certain types of RNA, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been recognized as key regulatory elements. These RNA types wield significant influence on gene expression through epigenetic regulation, directing various biological functions essential to bone metabolism. This extensive review compiles current research uncovering the complex ways in which miRNAs, lncRNAs, and circRNAs are involved in the development of osteoporosis, especially in osteoblasts and osteoclasts. Gaining a more profound understanding of the roles these three RNA classes play in osteoporosis could reveal new diagnostic methods and treatment approaches for this incapacitating condition. In conclusion, this review delves into the complex domain of epigenetic regulation via non-coding RNA in osteoporosis. It sheds light on the complex interactions and mechanisms involving miRNAs, lncRNAs, and circRNAs within osteoblasts and osteoclasts, offering an in-depth understanding of the less explored aspects of osteoporosis pathogenesis. These insights not only reveal the complexity of the disease but also offer significant potential for developing new diagnostic methods and targeted treatments. Therefore, this review marks a crucial step in deciphering the elusive complexities of osteoporosis, leading towards improved patient care and enhanced quality of life.
Collapse
Affiliation(s)
- Mojtaba Baniasadi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Talebi
- Department of Orthopedics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,Iran
| | - Amir Hossein Zabolian
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Zhang J, Jiang J, Qin Y, Zhang Y, Wu Y, Xu H. Systemic immune-inflammation index is associated with decreased bone mass density and osteoporosis in postmenopausal women but not in premenopausal women. Endocr Connect 2023; 12:EC-22-0461. [PMID: 36598289 PMCID: PMC9986387 DOI: 10.1530/ec-22-0461] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
PURPOSE This study aims to investigate the associations of the systemic immune-inflammation index (SII) with bone mineral density (BMD) and osteoporosis in adult females from a nationally representative sample. METHODS A cross-sectional study was performed among 4092 females aged ≥20 years from the National Health and Nutrition Examination Survey 2007-2010. Linear and logistic regressions were applied to explore the relationships of SII with BMD and the risk of osteoporosis, respectively. RESULTS Linear regression analyses found that a doubling of SII levels was significantly correlated with a 1.39% (95% CI: 0.57%, 2.20%) decrease in total femur BMD, a 1.16% (95% CI: 0.31%, 2.00%) decrease in femur neck BMD, a 1.73% (95% CI: 0.78%, 2.66%) decrease in trochanter BMD, and a 1.35% (95% CI: 0.50%, 2.20%) decrease in intertrochanteric BMD among postmenopausal women, after adjusting for covariates. Logistic regression analyses showed that compared with postmenopausal women in the lowest SII quartile, those in the highest quartile had higher risks of osteoporosis in the total femur (odds ratio (OR) = 1.70, 95% CI: 1.04, 2.76), trochanter (OR = 1.86, 95% CI: 1.07, 3.38), intertrochanter (OR = 2.01, 95% CI: 1.05, 4.04) as well as overall osteoporosis (OR = 1.57, 95% CI: 1.04, 2.37). In contrast, there was no significant association between SII and BMD in premenopausal women. CONCLUSIONS SII levels were negatively associated with BMD levels in postmenopausal women but not in premenopausal women. Elevated SII levels could be a potential risk factor for osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Traditional Chinese Medicine (TCM) Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinlan Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Yao Qin
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yihui Zhang
- Department of Traditional Chinese Medicine (TCM) Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yungang Wu
- Department of Traditional Chinese Medicine (TCM) Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Correspondence should be addressed to H Xu:
| |
Collapse
|
5
|
Li X. LncRNA MALAT1 promotes osteogenic differentiation of BMSCs and inhibits osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis. J Tissue Eng Regen Med 2021; 16:311-329. [PMID: 34962086 DOI: 10.1002/term.3279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022]
Abstract
Osteoporosis is defined as a skeletal disorder characterized by impairment in bone strength. The potential application of lncRNAs as therapeutic targets for osteoporosis has been unveiled. This study investigated the regulatory mechanism of lncRNA MALAT1 in the differentiation of bone marrow stem cells (BMSCs) and macrophages (Mø) in osteoporosis. MALAT1 expression in peripheral blood of elderly osteoporosis patients and healthy volunteers was detected. BMSCs and mononuclear Mø were isolated and cultured. Osteogenic differentiation of BMSCs and osteoclastic differentiation of Mø were induced. BMSCs and Mø were transfected with si-MALAT1, miR-124-3p mimics, miR-124-3p inhibitor, or pcDNA IGF2BP1, followed by detection of cell differentiation. The target microRNAs (miRs) and downstream genes and signaling pathways of MALAT1 were examined. The ovariectomy-induced mouse model of osteoporosis was established, and the mice were injected with pcDNA-MALAT1. MALAT1 was downregulated in osteoporosis patients, increased in BMSCs after osteogenic differentiation, and diminished in Mø after osteoclastic differentiation. Downregulation of MALAT1 repressed osteogenic differentiation of BMSCs and facilitated osteoclastic differentiation of Mø. MALAT1 upregulated IGF2BP1 expression by competitively binding to miR-124-3p. miR-124-3p silencing reversed the effect of si-MALAT1 on BMSCs and Mø differentiation, and IGF2BP1 upregulation averted the effect of overexpressed-miR-124-3p by activating the Wnt/β-catenin pathway. Upregulation of MALAT1 activated the Wnt/β-catenin pathway and attenuated bone injury in mice. In conclusion, lncRNA MALAT1 promoted the osteogenic differentiation of BMSCs and inhibited osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiangxin Li
- Department of Pain, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun, 130021, Jilin, China
| |
Collapse
|
6
|
Guo J, Yuan Y, Zhang L, Wang M, Tong X, Liu L, Zhang M, Li H, Chen X, Zou J. Effects of exercise on the expression of long non-coding RNAs in the bone of mice with osteoporosis. Exp Ther Med 2021; 23:70. [PMID: 34934441 PMCID: PMC8649853 DOI: 10.3892/etm.2021.10993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Physical activity or exercise are known to promote bone formation and decrease bone resorption to maintain skeletal and bone health both in animal models and in humans with osteoporosis. Previous studies have indicated that long non-coding RNAs (lncRNAs) are able to regulate bone metabolism. Therefore, the present study aimed to evaluate whether lncRNAs responded to exercise by regulating the balance of bone metabolism in order to prevent osteoporosis. To meet this end, ovariectomized mice were used in the present study to establish an osteoporosis model. The exercise treatment groups were subjected to 9 weeks of treadmill running exercise in 4 weeks of the operation was performed Femurs were collected to measure bone mineral density, bone mass, bone formation and resorption. The expression levels of lncRNAs were subsequently measured using microarray and gene function analyses. The pairwise comparison results [ovariectomy (OVX) vs. OVX + exercise (EX); OVX vs. SHAM; SHAM vs. SHAM + EX; OVX + EX vs. SHAM + EX] of the gene microarray analysis revealed that the expression of 2,424 lncRNAs (1718 upregulated and 706 downregulated) were significantly altered in the mouse femurs following treadmill running. Gene Ontology (GO) analysis, incorporating the GO annotations ‘biological processes’, ‘molecular function’ and ‘cellular components’, of osteoporosis revealed that the VEGF, mTOR and NF-κB signaling pathways were potential targets of the lncRNAs. Moreover, it was possible to predict the target microRNAs (miRNAs) of six lncRNAs (LOC105246953, LOC102637959, NONMMUT014677, NONMMUT027251, ri|D130079K21|PX00187K16|1491 and NONMMUT006626), which suggested that the underlying mechanism by which lncRNAs respond to exercise involved bone regulation via lncRNA-miRNA sponge adsorption. Overall, these results suggested that the treadmill running exercise did regulate lncRNA expression in the bone, and that this was involved in the prevention of osteoporosis.
Collapse
Affiliation(s)
- Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaoyang Tong
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Miao Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Sports Science, Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
7
|
Yu X, Song MS, Rong PZ, Chen XJ, Shi L, Wang CH, Pang QJ. LncRNA SNHG1 modulates adipogenic differentiation of BMSCs by promoting DNMT1 mediated Opg hypermethylation via interacting with PTBP1. J Cell Mol Med 2021; 26:60-74. [PMID: 34854215 PMCID: PMC8742188 DOI: 10.1111/jcmm.16982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022] Open
Abstract
Recent evidence indicates that the abnormal differentiation of bone marrow‐derived mesenchymal stem cells (BMSCs) plays a pivotal role in the pathogenesis of osteoporosis. LncRNA SNHG1 has been found to be associated with the differentiation ability of BMSCs. In this study, we aimed to elucidate the role of lncRNA SNHG1 and its associated pathway on the differentiation of BMSCs in osteoporosis. Mice that underwent bilateral ovariectomy (OVX) were used as models of osteoporosis. Induced osteogenic or adipogenic differentiation was performed in mouse BMSCs. Compared to sham animals, lncRNA SNHG1 expression was upregulated in OVX mice. Also, the in vitro expression of SNHG1 was increased in adipogenic BMSCs but decreased in osteogenic BMSCs. Moreover, overexpression of SNHG1 enhanced the adipogenic capacity of BMSCs but inhibited their osteogenic capacity as determined by oil red O, alizarin red, and alkaline phosphatase staining, while silencing of SNHG1 led to the opposite results. LncRNA SNHG1 interacting with the RNA‐binding polypyrimidine tract‐binding protein 1 (PTBP1) promoted osteoprotegerin (Opg) methylation and suppressed Opg expression via mediating DNA methyltransferase (DNMT) 1. Furthermore, Opg was showed to regulate BMSC differentiation. Knockdown of SNHG1 decreased the expressions of adipogenic related genes but increased that of osteogenic related genes. However, the knockdown of Opg partially reversed those effects. In summary, lncRNA SNHG1 upregulated the expression of DNMT1 via interacting with PTBP1, resulting in Opg hypermethylation and decreased Opg expression, which in turn enhanced BMSC adipogenic differentiation and contributed to osteoporosis.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | | | - Peng-Ze Rong
- School of Medicine, Ningbo University, Ningbo, China
| | - Xian-Jun Chen
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Lin Shi
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Cheng-Hao Wang
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Qing-Jiang Pang
- Department of Orthopedics, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
8
|
Kim B, Cho YJ, Lim W. Osteoporosis therapies and their mechanisms of action (Review). Exp Ther Med 2021; 22:1379. [PMID: 34650627 PMCID: PMC8506919 DOI: 10.3892/etm.2021.10815] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is a common disease that affects millions of patients worldwide and is most common in menopausal women. The main characteristics of osteoporosis are low bone density and increased risk of fractures due to deterioration of the bone architecture. Osteoporosis is a chronic disease that is difficult to treat; thus, investigations into novel effective therapeutic methods are required. A number of studies have focused on determining the most effective treatment options for this disease. There are several treatment options for osteoporosis that differ depending on the characteristics of the disease, and these include both well-established and newly developed drugs. The present review focuses on the various drugs available for osteoporosis, the associated mechanisms of action and the methods of administration.
Collapse
Affiliation(s)
- Beomchang Kim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong Jin Cho
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Wonbong Lim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
9
|
Wang M, Huan Y, Li X, Li J, Lv G. RUNX3 derived hsa_circ_0005752 accelerates the osteogenic differentiation of adipose-derived stem cells via the miR-496/MDM2-p53 pathway. Regen Ther 2021; 18:430-440. [PMID: 34754888 PMCID: PMC8546365 DOI: 10.1016/j.reth.2021.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Circular RNAs (circRNAs) are non-coding RNAs that play a pivotal role in bone diseases. RUNX3 was an essential transcriptional regulator during osteogenesis. However, it is unknown whether RUNX3 regulates hsa_circ_0005752 during osteogenic differentiation. Methods The levels of hsa_circ_0005752 and RUNX3 were measured by qRT-PCR after osteogenic differentiation of ADSCs. The osteogenic differentiation was analyzed by Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS). qRT-PCR and western blot were used to assess the expressions of osteogenic differentiation-related molecules. RNA pull-down, RIP, and luciferase reporter assays determine the interactions between miR-496 and hsa_circ_0005752 or MDM2 mRNA. CHIP-PCR analyzed the interaction between RUNX3 and LPAR1. Finally, the potential roles of RUNX3 were investigated during osteogenic differentiation with or without hsa_circ_0005752 knockdown. Results Hsa_circ_0005752 and RUNX3 were significantly increased, and miR-496 was remarkably decreased in ADSCs after osteogenic differentiation. Hsa_circ_0005752 could promote osteogenic differentiation, as shown by enhancing ALP and ARS staining intensity. Hsa_circ_0005752 enhanced the expressions of Runx2, ALP, Osx, and OCN. Furthermore, hsa_circ_0005752 directly targeted miR-496, which can directly bind to MDM2. RUNX3 bound to the LPAR1 promoter and enhanced hsa_circ_0005752 expressions. Moreover, the enhanced expression of hsa_circ_0005752 by RUNX3 could promote osteogenic differentiation, whereas knockdown of hsa_circ_0005752 partially antagonized the effects of RUNX3. Conclusion Our study demonstrated that RUNX3 promoted osteogenic differentiation via regulating the hsa_circ_0005752/miR-496/MDM2 axis and thus provided a new therapeutic strategy for osteoporosis.
Collapse
Key Words
- 3′ UTR, 3′ untranslated region
- ADSCs, adipose-derived stem cells
- ALP, alkaline phosphatase
- ARS, Alizarin Red Staining
- Adipose-derived stem cells
- BCA, bicinchoninic acid
- BM-MSCs, Bone Marrow-Mesenchymal Stem Cells
- BMP2, Bone morphogenetic protein 2
- ChIP, chromatin immunoprecipitation
- Circular RNAs
- ECL, enhanced chemiluminescence
- H&E staining, Hematoxylin and Eosin staining
- LPAR1, lysophosphatidic acid receptor 1
- MDM2
- MDM2, murine double minute 2
- OCN, osteocalcin
- OM, osteogenic (differentiation) medium
- Osteogenic differentiation
- Osx, osterix
- PMSF, phenylmethylsulfonyl fluoride
- RIP, RNA immunoprecipitation
- RUNX3
- Runx2, Runt-related transcription factor 2
- Runx3, RUNX Family Transcription Factor 3
- SDS-PAGE, polyacrylamide gel electrophoresis
- UC-MSCs, Umbilical Cord-Mesenchymal Stem Cells
- circRNAs, Circular RNAs
- miRNAs, microRNA
- microRNA
- qRT-PCR, quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Ming Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China.,Department of Spine Surgery, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, PR China
| | - Yifan Huan
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Xiyang Li
- Department of Orthopedics, Financial and Trade Hospital of Hunan Province, Changsha 410001, Hunan Province, PR China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, PR China
| |
Collapse
|
10
|
Chen S, Liu D, Zhou Z, Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med 2021; 27:122. [PMID: 34583640 PMCID: PMC8480040 DOI: 10.1186/s10020-021-00386-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background Osteoporosis is a widespread and serious metabolic bone disease. At present, revealing the molecular mechanisms of osteoporosis and developing effective prevention and treatment methods are of great significance to health worldwide. LncRNA is a non-coding RNA peptide chain with more than 200 nucleotides. Researchers have identified many lncRNAs implicated in the development of diseases and lncRNA H19 is an example. Results A large amount of evidence supports the fact that long non-coding RNA (lncRNA) genes, such as H19, have multiple, far-reaching effects on various biological functions. It has been found that lncRNA H19 has a role in the regulation of different types of cells in the body including the osteoblasts, osteocytes, and osteoclasts found in bones. Therefore, it can be postulated that lncRNA H19 affects the incidence and development of osteoporosis. Conclusion The prospect of targeting lncRNA H19 in the treatment of osteoporosis is promising because of the effects that lncRNA H19 has on the process of osteogenic differentiation. In this review, we summarize the molecular pathways and mechanisms of lncRNA H19 in the pathogenesis of osteoporosis and summarize the research progress of targeting H19 as a treatment option. Research is emerging that explores more effective treatment possibilities for bone metabolism diseases using molecular targets.
Collapse
Affiliation(s)
- Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| |
Collapse
|
11
|
Liang X, He M, Zhu B, Zhu Y, He X, Liu D, Wei Q. TMT-Based Proteomic Explores the Influence of DHEA on the Osteogenic Differentiation of hBMSCs. Front Cell Dev Biol 2021; 9:726549. [PMID: 34490274 PMCID: PMC8418125 DOI: 10.3389/fcell.2021.726549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Dehydroepiandrosterone (DHEA) has been revealed to implicate in facilitating osteoblast differentiation of human bone marrow mesenchymal stem cells (hBMSCs) and inhibiting osteoporosis (OP). However, the underlying molecular mechanism remains largely unknown. Here, we induced osteogenic differentiation of hBMSCs derived from elders using an osteogenic induction medium with or without DHEA. The results showed that osteogenic induction medium (OIM) with DHEA could significantly promote the proliferation and osteogenic differentiation of hBMSCs than OIM alone. By using a Tandem Mass Tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology, we screened out 604 differentially expressed proteins (DEPs) with at least one unique peptide were identified [524: OIM vs. complete medium (CM), and 547: OIM+DHEA vs. CM], among these proteins, 467 DEPs were shared in these two different comparative groups. Bioinformatic analysis revealed these DEPs are mainly enriched in metabolic pathways. Interestingly, the expression levels of the DEPs in the metabolic pathways showed a more noticeable change in the OIM+DHEA vs. CM group than OIM vs. CM group. Moreover, the protein-protein interaction (PPI) network analysis revealed that three potential proteins, ATP5B, MT-CYB, and MT-ATP6, involved in energy metabolism, might play a key role in osteogenic differentiation induced by OIM+DHEA. These findings offer a valuable clue for us to better understand the underlying mechanisms involved in osteoblast differentiation of hBMSCs caused by DHEA and assist in applying DHEA in hBMSCs-based therapy for osteogenic regeneration.
Collapse
Affiliation(s)
- Xiaonan Liang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingwei He
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongjia Zhu
- Nanning Second People's Hospital, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xixi He
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dachang Liu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingjun Wei
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Zhang J, Xu N, Yu C, Miao K, Wang Q. LncRNA PART1/miR-185-5p/RUNX3 feedback loop modulates osteogenic differentiation of bone marrow mesenchymal stem cells. Autoimmunity 2021; 54:422-429. [PMID: 34431433 DOI: 10.1080/08916934.2021.1966771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for bone formation, and its dysfunction is reported to be associated with osteoporosis (OP). Recent researches have determined that lncRNA PART1 participates in the pathogenesis of multiple diseases. However, its role in modulating osteogenic differentiation of hBMSCs is unclear. METHODS PART1, miR-185-5p, and RUNX3 levels were assessed via RT-qPCR. The protein levels of OCN, OSN, and COL1A1 were measured by western blotting. The osteoblastic phenotype was evaluated via ALP activity and ARS staining. The relationship between miR-185-5p and PART1 or RUNX3 was validated by luciferase reporter, RIP assays. RESULTS PART1 and RUNX3 expression were enhanced during hBMSC osteogenic differentiation. PART1 deletion decreased OCN, OSN, and COL1A1 levels and weakened ALP activity, but promoted the apoptosis of hBMSCs. Moreover, PART1 served as a ceRNA to influence the RUNX3 level via targeting miR-185-5p. In addition, RUNX3 was verified to activate the transcription of PART1 in hBMSCs. Finally, rescue assays indicated that suppression of miR-185-5p or addition of RUNX3 partially abolished the effects of PART1 knockdown on the levels of OCN, OSX, and COL1A1 levels, ALP activity, and apoptosis. CONCLUSION Our study elaborated that PART1/miR-185-5p/RUNX3 feedback contributed to osteogenic differentiation and inhibited the hBMSCs apoptosis, suggesting that PART1 might be a novel target for OP treatment.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Orthopedics and Traumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Nanwei Xu
- Department of Spinal Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Changlin Yu
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Kaisong Miao
- Department of Orthopedics and Traumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Qiugen Wang
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
13
|
Li J, Jin F, Cai M, Lin T, Wang X, Sun Y. LncRNA Nron Inhibits Bone Resorption in Periodontitis. J Dent Res 2021; 101:187-195. [PMID: 34157883 DOI: 10.1177/00220345211019689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Periodontitis is the most common chronic oral disease and is characterized by active osteoclast activity and significant alveolar bone resorption. However, the key regulatory factors of periodontal bone loss have yet to be determined, and reasonable intervention methods for periodontitis have not been developed. Currently, long noncoding RNAs (lncRNAs) have shown a remarkable ability to maintain normal cell and tissue homeostasis. Interestingly, we recently found that the lncRNA Nron is negatively correlated with alveolar bone resorption in periodontitis model. To explore the role of Nron in periodontal bone loss, osteoclastic-specific Nron knockout mice and osteoclastic-specific Nron transgenic mice were generated. Nron effectively inhibited osteoclastogenesis and alveolar bone resorption. Mechanistically, Nron was found to effectively promote the nuclear transport of NF-κb repressing factor (NKRF). In addition, NKRF in the nucleus significantly repressed the transcription of Nfatc1, which is a major NF-κb signaling molecule. Importantly, local injection of the Nron overexpression vector significantly inhibited osteoclastogenesis and alveolar bone resorption, which indicated the translational application potential of lncRNAs in the treatment of bone resorption in periodontitis.
Collapse
Affiliation(s)
- J Li
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - F Jin
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdisciplinary of Stomatology, Jinan University, Guangzhou, China
| | - M Cai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdisciplinary of Stomatology, Jinan University, Guangzhou, China
| | - T Lin
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - X Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdisciplinary of Stomatology, Jinan University, Guangzhou, China
| | - Y Sun
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
14
|
Jin F, Li J, Zhang YB, Liu X, Cai M, Liu M, Li M, Ma C, Yue R, Zhu Y, Lai R, Wang Z, Ji X, Wei H, Dong J, Liu Z, Wang Y, Sun Y, Wang X. A functional motif of long noncoding RNA Nron against osteoporosis. Nat Commun 2021; 12:3319. [PMID: 34083547 PMCID: PMC8175706 DOI: 10.1038/s41467-021-23642-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs are widely implicated in diverse disease processes. Nonetheless, their regulatory roles in bone resorption are undefined. Here, we identify lncRNA Nron as a critical suppressor of bone resorption. We demonstrate that osteoclastic Nron knockout mice exhibit an osteopenia phenotype with elevated bone resorption activity. Conversely, osteoclastic Nron transgenic mice exhibit lower bone resorption and higher bone mass. Furthermore, the pharmacological overexpression of Nron inhibits bone resorption, while caused apparent side effects in mice. To minimize the side effects, we further identify a functional motif of Nron. The delivery of Nron functional motif to osteoclasts effectively reverses bone loss without obvious side effects. Mechanistically, the functional motif of Nron interacts with E3 ubiquitin ligase CUL4B to regulate ERα stability. These results indicate that Nron is a key bone resorption suppressor, and the lncRNA functional motif could potentially be utilized to treat diseases with less risk of side effects. LncRNAs are implicated in the pathogenesis of a number of diseases. Here, the authors show that the lncRNA Nron suppresses bone resorption, and show that delivery of a functional motif of Nron increases bone mass in mouse models of osteoporosis.
Collapse
Affiliation(s)
- Fujun Jin
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Junhui Li
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yong-Biao Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Xiangning Liu
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China.,Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China.,Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Meijing Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Mengyao Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Ma
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Renfa Lai
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Zuolin Wang
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xunming Ji
- Department of Neurosurgery & China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huawei Wei
- Zeki Biotechnology & Pharmaceutical Co. Ltd, Beijing, China
| | - Jun Dong
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhiduo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yao Sun
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| | - Xiaogang Wang
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University & Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
| |
Collapse
|
15
|
Dolati S, Shakouri SK, Dolatkhah N, Yousefi M, Jadidi-Niaragh F, Sanaie S. The role of exosomal non-coding RNAs in aging-related diseases. Biofactors 2021; 47:292-310. [PMID: 33621363 DOI: 10.1002/biof.1715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Aging is a biological process caused by the accumulation of senescent cells with a permanent proliferative arrest. To the influence of aging on human life expectancy, there is essential for new biomarkers which possibly will assistance in recognizing age-associated pathologies. Exosomes, which are cell-secreted nanovesicles, make available a new biomarker detection and therapeutic approach for the transfer of different molecules with high capacity. Recently, non-coding RNAs (ncRNA) which are contained in exosomes have developed as important molecules regulating the complexity of aging and relevant human diseases. The discovery of ncRNA provided perceptions into an innovative regulatory platform that could interfere with cellular senescence. The non-coding transcriptome includes a different of RNA species, spanning from short ncRNAs (<200 nucleotides) to long ncRNAs, that are >200 bp long. Upgraded evidence displays that targeting ncRNAs possibly will influence senescence pathways. In this article, we will address ncRNAs that participated in age-related and cellular senescence diseases. Growing conception of ncRNAs in the aging process possibly will be responsible for new understandings into the improvement of age-related diseases and elongated life span.
Collapse
Affiliation(s)
- Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Teng Z, Zhu Y, Hao Q, Yu X, Teng Y, Yue Q, Zhang X, Lu S. Long non-coding RNA taurine upregulated gene 1 is downregulated in osteoporosis and influences the osteogenic differentiation of bone marrow mesenchymal stem cells. PeerJ 2021; 9:e11251. [PMID: 33976977 PMCID: PMC8063876 DOI: 10.7717/peerj.11251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/19/2021] [Indexed: 01/07/2023] Open
Abstract
Background With aging, an imbalance in bone remodeling leading to increased bone resorption and decreased bone formation is thought to contribute to osteoporosis. Osteoblastic differentiation of bone marrow mesenchymal stem cells (BMMSCs) plays a vital role in the pathogenesis of osteoporosis. However, the detailed molecular mechanisms of osteoporosis remain incompletely understood. Given that long non-coding RNA taurine upregulated gene 1 (lnc TUG1) plays a critical role in the osteogenic differentiation, and microRNA-23b (miR-23b) as a putative sponge for lnc TUG1 has upregulated expression in osteoporosis. Therefore, this study investigated the roles of TUG1/miR-23b in osteoporotic pathology. Material and Methods TUG1 and miR-23b expression in the plasma of osteoporotic patients were evaluated by quantitative real-time PCR (qRT-PCR). The osteogenic differentiation in human BMMSCs was evaluated by qRT-PCR, western blot, Alizarin red staining after knockdown of TUG1 by small interfering RNA (siRNA) treatment. Results Decreased expression of TUG1 and increased expression of miR-23b evident in the plasma of patients with osteoporosis than in that of age- and sex-matched healthy controls. Additionally, increased miR-23b expression inhibited runt-related transcription factor 2 (RUNX2), osteocalcin, and osteopontin expression and reduced calcified nodule formation based on the results of qRT-PCR, western blot, and Alizarin Red S staining. Conclusion The study for the first time reported that silence of lncRNA TUG1 significantly suppressed the osteogenic differentiation of BMMSCs possibly by targeting the miR-23b/RUNX2 signaling pathway. This mechanism of TUG1/miR-23b/RUNX2 signaling within the osteogenic differentiation of BMMSCs might provide new insight for the development of lncRNA-directed diagnostic and therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Zhaowei Teng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Yunnan Key Laboratory of Digital Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunan, China.,Kunming Medical University, The 920th Hospital, Kunming, Kunming, Yunan, China
| | - Yun Zhu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Qinggang Hao
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Xiaochao Yu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Yirong Teng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Qiaoning Yue
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Xiguang Zhang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China
| | - Sheng Lu
- Yunnan Key Laboratory of Digital Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunan, China.,Kunming Medical University, The 920th Hospital, Kunming, Kunming, Yunan, China
| |
Collapse
|
17
|
Falahati Z, Mohseni-Dargah M, Mirfakhraie R. Emerging Roles of Long Non-coding RNAs in Uterine Leiomyoma Pathogenesis: a Review. Reprod Sci 2021; 29:1086-1101. [PMID: 33844188 DOI: 10.1007/s43032-021-00571-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/01/2021] [Indexed: 01/19/2023]
Abstract
Uterine leiomyoma (UL), as the most prevalent type of women's health disorders, is a benign tumor that originates from the smooth muscle cell layer of the uterus. A great number of associated complications are observed including infertility, miscarriage, bleeding, pain, dysmenorrhea, menorrhagia, and dyspareunia. Although the etiology of UL is largely undefined, environmental and genetic factors are witnessed to engage in the UL development. As long non-coding RNAs (lncRNAs) are involved in various types of cellular functions, in recent years, a great deal of attention has been drawn to them and their possible roles in UL pathogenesis. Moreover, they have illustrated their potential to be promising candidates for UL treatment. In this review paper, firstly, an overview of UL pathogenesis is presented. Then, the regulation of lncRNAs in UL and their possible mechanisms in cancer development are reviewed. Eventually, therapeutic approaches targeting lncRNAs in various cancers and UL are explored.
Collapse
Affiliation(s)
- Zahra Falahati
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masoud Mohseni-Dargah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Koodakyar St., Velenjak Ave, Chamran Highway, Tehran, Iran.
- Genomic Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis 2021; 12:340. [PMID: 33795657 PMCID: PMC8016856 DOI: 10.1038/s41419-021-03586-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis is the most prevailing primary bone disease and a growing health care burden. The aim of this study was to clarify the functional roles and mechanisms of the circ-ITCH regulating osteogenic differentiation of osteoporosis. Circ-ITCH and yes-associated protein 1 (YAP1) levels were downregulated, but the miR‐214 level was upregulated in osteoporotic mice and patients. Knockdown of circ-ITCH inhibited the alkaline phosphatase (ALP) activity, mineralized nodule formation, and expression of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) during osteogenic induction. Furthermore, miR-214 was a target of circ-ITCH, knockdown of miR-214 could impede the regulatory effects of sh-circ-ITCH on osteogenic differentiation. Moreover, miR-214 suppressed hBMSCs osteogenic differentiation by downregulating YAP1. Finally, in vivo experiments indicated that overexpression of circ-ITCH could improve osteogenesis in ovariectomized mice. In conclusion, circ-ITCH upregulated YAP1 expression to promote osteogenic differentiation in osteoporosis via sponging miR-214. Circ-ITCH could act as a novel therapeutic target for osteoporosis.
Collapse
|
19
|
Long non-coding RNA DANCR modulates osteogenic differentiation by regulating the miR-1301-3p/PROX1 axis. Mol Cell Biochem 2021; 476:2503-2512. [PMID: 33629241 DOI: 10.1007/s11010-021-04074-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
The balance of osteoblasts and marrow adipocytes from bone marrow mesenchymal stem cells (BM-MSCs) maintains bone health. Under aging or other pathological stimuli, BM-MSCs will preferentially differentiate into marrow adipocytes and reduce osteoblasts, leading to osteoporosis. Long non-coding RNA differentiation antagonizing non-protein coding RNA (DANCR) participates in the osteogenic differentiation of human BM-MSCs, but the mechanism by which DANCR regulates the osteogenic differentiation of human BM-MSCs has not been fully explained. We observed that DANCR and prospero homeobox 1 (PROX1) were downregulated during osteogenic differentiation of human BM-MSCs, while miR-1301-3p had an opposite trend. DANCR overexpression decreased the levels of alkaline phosphatase, RUNX2, osteocalcin, Osterix in BM-MSCs after osteogenic induction, but DANCR silencing had the opposite result. Moreover, DANCR sponged miR-1301-3p to regulate PROX1 expression. miR-1301-3p overexpression reversed the suppressive role of DANCR elevation on the osteogenic differentiation of human BM-MSCs. Also, PROX1 elevation abolished the promoting role of miR-1301-3p overexpression on the osteogenic differentiation of human BM-MSCs. In conclusion, DANCR suppressed the osteogenic differentiation of human BM-MSCs through the miR-1301-3p/PROX1 axis, offering a novel mechanism by which DANCR is responsible for the osteogenic differentiation of human BM-MSCs.
Collapse
|
20
|
Yang C, Gu Z, Ding R, Huang C, Li Q, Xie D, Zhang R, Qiu Y. Long non-coding RNA MEG3 silencing and microRNA-214 restoration elevate osteoprotegerin expression to ameliorate osteoporosis by limiting TXNIP. J Cell Mol Med 2021; 25:2025-2039. [PMID: 33393160 PMCID: PMC7882928 DOI: 10.1111/jcmm.16096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023] Open
Abstract
Studies have shown that long non-coding RNA (lncRNA) MEG3 plays a key role in osteoporosis (OP), but its regulatory mechanism is somewhat incompletely clear. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA-214 (miR-214) and thioredoxin-interacting protein (TXNIP). Rat models of OP were established. MEG3, miR-214 and TXNIP mRNA expression in rat femoral tissues were detected, along with TXNIP, OPG and RANKL protein expression. BMD, BV/TV, Tb.N and Tb.Th in tissue samples were measured. Ca, P and ALP contents in rat serum were also determined. Primary osteoblasts were isolated and cultured. Viability, COL-I, COL-II and COL-Χ mRNA expression, PCNA, cyclin D1, OCN, RUNX2 and osteolix protein expresion, ALP content and activity, and mineralized nodule area of rat osteoblasts were further detected. Dual-luciferase reporter gene and RNA-pull down assays verified the targeting relationship between MEG3, miR-214 and TXNIP. MEG3 and TXNIP were up-regulated while miR-214 was down-regulated in femoral tissues of OP rats. MEG3 silencing and miR-214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, trabecular bone area, collagen area and OPG expression, and down-regulated RANKL of femoral tissues in OP rats. MEG3 silencing and miR-214 overexpression elevated Ca and P and reduced ALP in OP rat serum, elevated osteoblast viability, differentiation ability, COL-I and COL-Χ expression and ALP activity, and reduced COL-II expression of osteoblasts. MEG3 specifically bound to miR-214 to regulate TXNIP. MEG3 silencing and miR-214 overexpression promote proliferation and differentiation of osteoblasts in OP by down-regulating TXNIP, which further improves OP.
Collapse
Affiliation(s)
- ChangSheng Yang
- Division of Spine Surgery, Section IIDepartment of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| | - ZhengTao Gu
- Department of Treatment Center For Traumatic InjuriesThe Third Affifiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| | - Rui Ding
- Division of Spine Surgery, Section IIDepartment of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| | - CaiQiang Huang
- Division of Spine Surgery, Section IIDepartment of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| | - QingChu Li
- Division of Joint SurgeryDepartment of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| | - DengHui Xie
- Division of Spine Surgery, Section IIDepartment of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| | - RongKai Zhang
- Division of Spine Surgery, Section IIDepartment of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| | - YiYan Qiu
- Division of Spine Surgery, Section IIDepartment of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangdong Provincial Key Laboratory of Bone and Joint Degeneration DiseasesSouthern Medical UniversityAcademy of Orthopedics of Guangdong ProvinceGuangzhouChina
| |
Collapse
|
21
|
Fittipaldi S, Visconti VV, Tarantino U, Novelli G, Botta A. Genetic variability in noncoding RNAs: involvement of miRNAs and long noncoding RNAs in osteoporosis pathogenesis. Epigenomics 2020; 12:2035-2049. [PMID: 33264054 DOI: 10.2217/epi-2020-0233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of osteoporosis is multifactorial and is the consequence of genetic, hormonal and lifestyle factors. Epigenetics, including noncoding RNA (ncRNA) deregulation, represents a link between susceptibility to develop the disease and environmental influences. The majority of studies investigated the expression of ncRNAs in osteoporosis patients; however, very little information is available on their genetic variability. In this review, we focus on two classes of ncRNAs: miRNAs and long noncoding RNAs (lncRNAs). We summarize recent findings on how polymorphisms in miRNAs and lncRNAs can perturb the lncRNA/miRNA/mRNA axis and may be involved in osteoporosis clinical outcome. We also provide a general overview on databases and bioinformatic tools useful for associating miRNAs and lncRNAs variability with complex genetic diseases.
Collapse
Affiliation(s)
- Simona Fittipaldi
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Veronica Visconti
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopedics & Traumatology, PTV Foundation, 00133 Rome, Italy.,Department of Clinical Sciences & Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Botta
- Department of Biomedicine & Prevention, Medical Genetics Section, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
22
|
The Role of Extracellular Vesicles (EVs) in the Epigenetic Regulation of Bone Metabolism and Osteoporosis. Int J Mol Sci 2020; 21:ijms21228682. [PMID: 33213099 PMCID: PMC7698531 DOI: 10.3390/ijms21228682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are complex phospholipidic structures actively released by cells. EVs are recognized as powerful means of intercellular communication since they contain many signaling molecules (including lipids, proteins, and nucleic acids). In parallel, changes in epigenetic processes can lead to changes in gene function and finally lead to disease onset and progression. Recent breakthroughs have revealed the complex roles of non-coding RNAs (microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)) in epigenetic regulation. Moreover, a substantial body of evidence demonstrates that non-coding RNAs can be shuttled among the cells and tissues via EVs, allowing non-coding RNAs to reach distant cells and exert systemic effects. Resident bone cells, including osteoclasts, osteoblasts, osteocytes, and endothelial cells, are tightly regulated by non-coding RNAs, and many of them can be exported from the cells to neighboring ones through EVs, triggering pathological conditions. For these reasons, researchers have also started to exploit EVs as a theranostic tool to address osteoporosis. In this review, we summarize some recent findings regarding the EVs’ involvement in the fine regulation of non-coding RNAs in the context of bone metabolism and osteoporosis.
Collapse
|
23
|
Patil S, Dang K, Zhao X, Gao Y, Qian A. Role of LncRNAs and CircRNAs in Bone Metabolism and Osteoporosis. Front Genet 2020; 11:584118. [PMID: 33281877 PMCID: PMC7691603 DOI: 10.3389/fgene.2020.584118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a mechanosensitive organ that provides strength and support. Many bone cells, various pathways, and signaling molecules coordinate bone metabolism and also determine the course of bone diseases, such as osteoporosis, osteonecrosis, osteopenia, etc. Osteoporosis is caused by increased bone resorption and reduced bone formation due to the changes in the level of different proteins and RNAs in osteoclast or/and osteoblasts. The available therapeutic interventions can significantly reduce bone resorption or enhance bone formation, but their prolonged use has deleterious side effects. Therefore, the use of non-coding RNAs as therapeutics has emerged as an interesting field of research. Despite advancements in the molecular field, not much is known about the role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in bone homeostasis and osteoporosis. Therefore, in this article, we summarize the role of lncRNAs and circRNAs in different bone cells and osteoporosis so that it might help in the development of osteoporotic therapeutics.
Collapse
Affiliation(s)
- Suryaji Patil
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi'an, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Department of Chemistry, Tangshan Normal University, Tangshan, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
24
|
Teng Z, Zhu Y, Zhang X, Teng Y, Lu S. Osteoporosis Is Characterized by Altered Expression of Exosomal Long Non-coding RNAs. Front Genet 2020; 11:566959. [PMID: 33281871 PMCID: PMC7689021 DOI: 10.3389/fgene.2020.566959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by a decrease in bone mass and degradation of the bone microstructure, which increases bone fragility and risk of fracture. However, the molecular mechanisms of osteoporosis remain unclear. The current study attempts to elucidate the role of exosomal long non-coding RNA in the pathology of osteoporosis. Peripheral blood was collected from persons with (OP) or without (NC) osteoporosis, and the serum exosomes were extracted using ultra centrifugation process. Total RNA of exosomes was isolated, and the lncRNAs profiling was done using RNA-Seq experiments. In silico analysis resulted in identification of 393 differentially expressed (DE) lncRNAs in OP vs. NC, with 296 that were up-regulated and 97 were down-regulated. Bioinformatics analysis of potential target mRNAs of lncRNAs with cis-acting mechanism showed that mRNAs co-located with DE lncRNAs were highly enriched in osteoporosis-related pathways, including regulation of insulin secretion, activation of MAPK activity, cellular response to metal ions, fucosylation and proteolysis. Together these results suggest that lncRNAs of serum exosomes could play a significant role in development of osteoporosis and such information may be helpful in developing diagnostic markers and therapeutic modules for osteoporosis.
Collapse
Affiliation(s)
- Zhaowei Teng
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China.,Yunnan Key Laboratory of Digital Orthopedics, The First People's Hospital of Yunnan Province, Kunming, China.,The 920 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Xiguang Zhang
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yirong Teng
- The 6th Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Sheng Lu
- Yunnan Key Laboratory of Digital Orthopedics, The First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
25
|
Hao R, Wang B, Wang H, Huo Y, Lu Y. lncRNA TUG1 promotes proliferation and differentiation of osteoblasts by regulating the miR-545-3p/CNR2 axis. ACTA ACUST UNITED AC 2020; 53:e9798. [PMID: 33053117 PMCID: PMC7552904 DOI: 10.1590/1414-431x20209798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022]
Abstract
Osteoblast differentiation is an effective way to promote bone formation. Long non-coding RNA taurine upregulated 1 (TUG1) has been identified as a crucial modulator of multiple biological processes. This study was designed to investigate the function of TUG1 in the proliferation and differentiation of osteoblast precursor cells hFOB1.19. In this study, we found that TUG1 promoted hFOB1.19 cell proliferation, while TUG1 knockdown hindered cell proliferation. TUG1 and cannabinoid receptor 2 (CNR2) were upregulated, while miR-545-3p was down-regulated in hFOB1.19 cells undergoing osteoblastic differentiation. TUG1 induced osteoblast differentiation by increasing alkaline phosphatase (ALP) activity and the expression of osteoblastic differentiation markers. TUG1 was a sponge of miR-545-3p and regulated osteoblastic differentiation by modulating miR-545-3p. Moreover, miR-545-3p directly targeted CNR2 and restored the effect of CNR2 on osteoblastic differentiation. In conclusion, TUG1 accelerated the proliferation and differentiation of osteoblasts by sponging miR-545-3p and increasing CNR2 expression, which might provide a new biomarker for bone diseases.
Collapse
Affiliation(s)
- Ruizheng Hao
- Department of Hand Surgery, The Second Hospital of Tangshan, Tangshan, Hebei, China
| | - Bin Wang
- Department of Hand Surgery, The Second Hospital of Tangshan, Tangshan, Hebei, China
| | - Hui Wang
- Department of Hand Surgery, The Second Hospital of Tangshan, Tangshan, Hebei, China
| | - Yongxin Huo
- Department of Hand Surgery, The Second Hospital of Tangshan, Tangshan, Hebei, China
| | - Yang Lu
- Department of Orthopedics, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
26
|
The crosstalk between bone metabolism, lncRNAs, microRNAs and mRNAs in coronary artery calcification. Genomics 2020; 113:503-513. [PMID: 32971215 DOI: 10.1016/j.ygeno.2020.09.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 01/02/2023]
Abstract
The association between Coronary Artery Calcification (CAC) and osteoporosis has been reported but not fully understood. Therefore, using an original bioinformatic framework we analyzed transcriptomic profiles of 20 elderly women with high CAC score and 31 age- and sex-matching controls from São Paulo Ageing & Health study (SPAH). We integrated differentially expressed microRNA (miRNA) and long-noncoding RNA (lncRNA) interactions with coding genes associated with CAC, in the context of bone-metabolism genes mined from literature. Top non-coding regulators of bone metabolism in CAC included miRNA 497-5p/195 and 106a-5p, and lncRNA FAM197Y7. Top non-coding RNAs revealed significant interplay between genes regulating bone metabolism, vascularization-related processes, chromatin organization, prostaglandin and calcium co-signaling. Prostaglandin E2 receptor 3 (PTGER3), Fibroblasts Growth Factor Receptor 1 (FGFR1), and One Cut Homeobox 2 (ONECUT2) were identified as the most susceptible to regulation by the top non-coding RNAs. This study provides a flexible transcriptomic framework including non-coding regulation for biomarker-related studies.
Collapse
|
27
|
The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res 2020; 53:40. [PMID: 32938500 PMCID: PMC7493179 DOI: 10.1186/s40659-020-00309-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis is a common metabolic bone disease, influenced by genetic and environmental factors, that increases bone fragility and fracture risk and, therefore, has a serious adverse effect on the quality of life of patients. However, epigenetic mechanisms involved in the development of osteoporosis remain unclear. There is accumulating evidence that epigenetic modifications may represent mechanisms underlying the links of genetic and environmental factors with increased risk of osteoporosis and bone fracture. Some RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been shown to be epigenetic regulators with significant involvement in the control of gene expression, affecting multiple biological processes, including bone metabolism. This review summarizes the results of recent studies on the mechanisms of miRNA-, lncRNA-, and circRNA-mediated osteoporosis associated with osteoblasts and osteoclasts. Deeper insights into the roles of these three classes of RNA in osteoporosis could provide unique opportunities for developing novel diagnostic and therapeutic approaches to this disease.
Collapse
|
28
|
Zhang Y, Chen XF, Li J, He F, Li X, Guo Y. lncRNA Neat1 Stimulates Osteoclastogenesis Via Sponging miR-7. J Bone Miner Res 2020; 35:1772-1781. [PMID: 32353178 DOI: 10.1002/jbmr.4039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022]
Abstract
Increasing evidence uncover the essential role of long noncoding RNA (lncRNAs) in bone metabolism and the association of lncRNA with genetic risk of osteoporosis. However, whether lncRNA nuclear paraspeckle assembly transcript 1 (Neat1) is involved remains largely unknown. In the present study, we found that Neat1 is induced by osteoclastic differentiation stimuli. Knockdown of Neat1 attenuates osteoclast formation whereas overexpression of Neat1 accelerates osteoclast formation. In vivo evidence showed that enhanced Neat1 expression stimulates osteoclastogenesis and reduces bone mass in mice. Mechanically, Neat1 competitively binds with microRNA 7 (miR-7) and blocks its function for regulating protein tyrosine kinase 2 (PTK2). Intergenic SNP rs12789028 acts as allele-specific long-range enhancer for NEAT1 via chromatin interactions. We establish for the first time that Neat1 plays an essential role in osteoclast differentiation, and provide genetic mechanism underlying the association of NEAT1 locus with osteoporosis risk. These results enrich the current knowledge of NEAT1 function, and uncover the potential of NEAT1 as a therapeutic target for osteoporosis. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jing Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fang He
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
29
|
Zhao Y, Jia L, Zheng Y, Li W. Involvement of Noncoding RNAs in the Differentiation of Osteoclasts. Stem Cells Int 2020; 2020:4813140. [PMID: 32908541 PMCID: PMC7468661 DOI: 10.1155/2020/4813140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
As the most important bone-resorbing cells, osteoclasts play fundamental roles in bone remodeling and skeletal health. Much effort has been focused on identifying the regulators of osteoclast metabolism. Noncoding RNAs (ncRNAs) reportedly regulate osteoclast formation, differentiation, survival, and bone-resorbing activity to participate in bone physiology and pathology. The present review intends to provide a general framework for how ncRNAs and their targets regulate osteoclast differentiation and the important events of osteoclastogenesis they are involved in, including osteoclast precursor generation, early differentiation, mononuclear osteoclast fusion, and multinucleated osteoclast function and survival. This framework is beneficial for understanding bone biology and for identifying the potential biomarkers or therapeutic targets of bone diseases. The review also summarizes the results of in vivo experiments and classic experiment methods for osteoclast-related researches.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
30
|
LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp Mol Med 2020; 52:1310-1325. [PMID: 32778797 PMCID: PMC8080634 DOI: 10.1038/s12276-020-0475-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Our study aimed to determine how lncRNA DANCR, miR-320a, and CTNNB1 interact with each other and regulate osteogenic differentiation in osteoporosis. qRT-PCR and western blotting were performed to determine the expression of DANCR, miR-320a, CTNNB1, and the osteoporosis- or Wnt/β-catenin pathway-related markers T-cell factor 1 (TCF-1), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Interactions between CTNNB1, DANCR, and miR-320a were predicted by bioinformatics approaches and validated using a luciferase assay. Osteoblastic phenotypes were evaluated by ALP staining, ALP activity assay and Alizarin Red staining. The bilateral ovariectomy method was used to establish an in vivo osteoporosis model. Bone morphological changes were examined using hematoxylin and eosin (H&E) and Alcian Blue staining. The expression levels of DANCR and miR-320a in BMSCs derived from osteoporosis patients were upregulated, whereas CTNNB1 expression was downregulated compared with that in healthy controls. Importantly, we demonstrated that miR-320a and DANCR acted independently from each other and both inhibited CTNNB1 expression, whereas the inhibitory effect was additive when miR-320a and DANCR were cooverexpressed. Moreover, we found that DANCR overexpression largely abrogated the effect of the miR-320a inhibitor on CTNNB1 expression and the Wnt/β-catenin signaling pathway in BMSCs during osteogenic differentiation. We further confirmed the results above in BMSCs derived from an osteoporosis animal model. Taken together, our findings revealed that DANCR and miR-320a regulated the Wnt/β-catenin signaling pathway during osteogenic differentiation in osteoporosis through CTNNB1 inhibition. Our results highlight the potential value of DANCR and miR-320a as promising therapeutic targets for osteoporosis treatment. Two non-coding RNAs are potential targets for reducing bone loss in post-menopausal osteoporosis. Bones are constantly being remodeled; when resorption outpaces generation of new bone, bones are weakened, causing osteoporosis and leading to decreased quality of life and injuries. Although treatments exist, they often have undesirable side effects, and new treatments are needed. The molecular basis of the changes that accompany osteoporosis are poorly understood. Da Zhong at the Xiangya Hospital of Central South University in Changsha, China, and co-workers investigated how two non-coding RNAs, small molecules that regulate gene expression, are involved in the progression of post-menopausal osteoporosis. They found that levels of both molecules are increased in osteoporosis, and that silencing them increases building of new bone, key to maintaining bone strength. These results illuminate a potential new direction in treatments for osteoporosis.
Collapse
|
31
|
Ko NY, Chen LR, Chen KH. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis. Int J Mol Sci 2020; 21:ijms21144886. [PMID: 32664424 PMCID: PMC7402348 DOI: 10.3390/ijms21144886] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a major concern worldwide and can be attributed to an imbalance between osteoblastic bone formation and osteoclastic bone resorption due to the natural aging process. Heritable factors account for 60-80% of optimal bone mineralization; however, the finer details of pathogenesis remain to be elucidated. Micro RNA (miRNA) and long-non-coding RNA (lncRNA) are two targets that have recently come into the spotlight due to their ability to control gene expression at the post-transcriptional level and provide epigenetic modification. miRNAs are a class of non-coding RNAs that are approximately 18-25 nucleotides long. It is thought that up to 60% of human protein-coding genes may be regulated by miRNAs. They have been found to regulate gene expression that controls osteoblast-dependent bone formation and osteoclast-related bone remodeling. lncRNAs are highly structured RNA transcripts longer than 200 nucleotides that do not translate into proteins. They have very complex secondary and tertiary structures and the same degradation processes as messenger RNAs. The fact that they have a rapid turnover is due to their sponge function in binding the miRNAs that lead to a degradation of the lncRNA itself. They can act as signaling, decoy, and framework molecules, or as primers. Current evidence suggests that lncRNAs can act as chromatin and transcriptional as well as post-transcriptional regulators. With regards to osteoporosis, lncRNA is thought to be involved in the proliferation, apoptosis, and inflammatory response of the bone. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on the roles of miRNAs and lncRNAs in osteoporosis. Further research into the epigenetic modification and the regulatory roles of these molecules will bring us closer to potential disease-modifying treatment for osteoporosis. However, more issues regarding the detailed actions of miRNAs and lncRNAs in osteoporosis remain unknown and controversial and warrant future investigation.
Collapse
Affiliation(s)
- Nai-Yu Ko
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (N.-Y.K.); (L.-R.C.)
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (N.-Y.K.); (L.-R.C.)
- Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-2-66289779
| |
Collapse
|
32
|
Chen DY, Jiang RF, Li YJ, Liu MX, Wu L, Hu W. Screening and functional identification of lncRNAs in antler mesenchymal and cartilage tissues using high-throughput sequencing. Sci Rep 2020; 10:9492. [PMID: 32528134 PMCID: PMC7289821 DOI: 10.1038/s41598-020-66383-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a transcription product of the mammalian genome that regulates the development and growth in the body. The present study aimed to analyze the expression dynamics of lncRNA in sika antler mesenchymal and cartilage tissues by high-throughput sequencing. Bioinformatics was applied to predict differentially expressed lncRNAs and target genes and screen lncRNAs and mRNAs related to osteogenic differentiation, cell proliferation, and migration. Finally, the expression of the lncRNAs and target genes were analyzed by qRT-PCR. The results showed that compared to the cartilage tissue, the transcription levels of lncRNA and mRNA, 1212 lncRNAs and 518 mRNAs, in mesenchymal tissue were altered significantly. Thus, a complex interaction network was constructed, and the lncRNA-mRNA interaction network correlation related to osteogenic differentiation, cell proliferation, and migration was analyzed. Among these, the 26 lncRNAs and potential target genes were verified by qRT-PCR, and the results of qRT-PCR were consistent with high-throughput sequencing results. These data indicated that lncRNA promotes the differentiation of deer antler mesenchymal tissue into cartilage tissue by regulating the related osteogenic factors, cell proliferation, and migration-related genes and accelerating the process of deer antler regeneration and development.
Collapse
Affiliation(s)
- Dan-Yang Chen
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Ren-Feng Jiang
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Yan-Jun Li
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Ming-Xiao Liu
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China
| | - Lei Wu
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China.
| | - Wei Hu
- College of Life Science, Jilin Agriculture University, Changchun, Jilin Province, 130118, China.
| |
Collapse
|
33
|
Salah SMM, Matboli M, Nasser HET, Abdelnaiem IA, Shafei AES, El-Asmer MF. Dysregulation in the expression of (lncRNA-TSIX, TP53INP2 mRNA, miRNA-1283) in spinal cord injury. Genomics 2020; 112:3315-3321. [PMID: 32535070 DOI: 10.1016/j.ygeno.2020.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022]
Abstract
AIM The objective of this study is to examine the alterations in the levels of expression of serum lncRNA-TSIX, TP53INP2 mRNA, miRNA-1283 in spinal cord injured (SCI) patients versus healthy control. METHOD The expression of the selected RNAs in the sera was determined in 23 patients suffering from acute spinal cord injury, 41 individuals with chronic spinal cord injury, and 36 healthy control using real-time reverse-transcription polymerase chain reaction method. RESULTS The results showed that lncRNA-TSIX and the TP53INP2 mRNA expression levels in SCI patients was overexpressed in comparison to the control group alongside with a significant downregulation of miR-1283. Statistically,there was a highly significant positive correlation between lnc-RNA-TRIX and TP53INP2 mRNA with inverse correlation between miRNA-1283 and lnc-RNA-TRIX based on fold changes. CONCLUSION Up-regulation of lncRNA-TSIX, TP53INP2 mRNA with downregulation of miRNA-1283 might be closely associated with progression of SCI.
Collapse
Affiliation(s)
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Hanaa El-Tayeb Nasser
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Mohamed Farid El-Asmer
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
34
|
Sun H, Peng G, Wu H, Liu M, Mao G, Ning X, Yang H, Deng J. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 2020; 13:15-21. [PMID: 32494359 PMCID: PMC7257936 DOI: 10.3892/br.2020.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Osteogenic differentiation originating from mesenchymal stem cells (MSCs) requires tight co-ordination of transcriptional factors, signaling pathways and biomechanical cues. Dysregulation of such reciprocal networks may influence the proliferation and apoptosis of MSCs and osteoblasts, thereby impairing bone metabolism and homeostasis. An increasing number of studies have shown that long non-coding (lnc)RNAs are involved in osteogenic differentiation and thus serve an important role in the initiation, development, and progression of bone diseases such as tumors, osteoarthritis and osteoporosis. It has been reported that the lncRNA, maternally expressed gene 3 (MEG3), regulates osteogenic differentiation of multiple MSCs and also acts as a critical mediator in the development of bone formation and associated diseases. In the present review, the proposed mechanisms underlying the roles of MEG3 in osteogenic differentiation and its potential effects on bone diseases are discussed. These discussions may help elucidate the roles of MEG3 in osteogenic differentiation and highlight potential biomarkers and therapeutic targets for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guoxuan Peng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hongbin Wu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guping Mao
- Department of Joint Surgery, Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin Deng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
35
|
Zhang R, Li J, Li G, Jin F, Wang Z, Yue R, Wang Y, Wang X, Sun Y. LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption. Int J Oral Sci 2020; 12:14. [PMID: 32385254 PMCID: PMC7210890 DOI: 10.1038/s41368-020-0077-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/19/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Activation of osteoclasts during orthodontic tooth treatment is a prerequisite for alveolar bone resorption and tooth movement. However, the key regulatory molecules involved in osteoclastogenesis during this process remain unclear. Long noncoding RNAs (lncRNAs) are a newly identified class of functional RNAs that regulate cellular processes, such as gene expression and translation regulation. Recently, lncRNAs have been reported to be involved in osteogenesis and bone formation. However, as the most abundant noncoding RNAs in vivo, the potential regulatory role of lncRNAs in osteoclast formation and bone resorption urgently needs to be clarified. We recently found that the lncRNA Nron (long noncoding RNA repressor of the nuclear factor of activated T cells) is highly expressed in osteoclast precursors. Nron is downregulated during osteoclastogenesis and bone ageing. To further determine whether Nron regulates osteoclast activity during orthodontic treatment, osteoclastic Nron transgenic (Nron cTG) and osteoclastic knockout (Nron CKO) mouse models were generated. When Nron was overexpressed, the orthodontic tooth movement rate was reduced. In addition, the number of osteoclasts decreased, and the activity of osteoclasts was inhibited. Mechanistically, Nron controlled the maturation of osteoclasts by regulating NFATc1 nuclear translocation. In contrast, by deleting Nron specifically in osteoclasts, tooth movement speed increased in Nron CKO mice. These results indicate that lncRNAs could be potential targets to regulate osteoclastogenesis and orthodontic tooth movement speed in the clinic in the future.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Junhui Li
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Gongchen Li
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fujun Jin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zuolin Wang
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rui Yue
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yibin Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaogang Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
36
|
Børset M, Sundan A, Waage A, Standal T. Why do myeloma patients have bone disease? A historical perspective. Blood Rev 2020; 41:100646. [DOI: 10.1016/j.blre.2019.100646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
|
37
|
Centofanti F, Santoro M, Marini M, Visconti VV, Rinaldi AM, Celi M, D’Arcangelo G, Novelli G, Orlandi A, Tancredi V, Tarantino U, Botta A. Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients. Biomedicines 2020; 8:E65. [PMID: 32204466 PMCID: PMC7148473 DOI: 10.3390/biomedicines8030065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) is a multifactorial disease influenced by genetic, epigenetic, and environmental factors. One of the main causes of the bone homeostasis alteration is inflammation resulting in excessive bone resorption. Long non-coding RNAs (lncRNAs), have a crucial role in regulating many important biological processes in bone, including inflammation. We designed our study to identify lncRNAs misregulated in osteoblast primary cultures derived from OP patients (n = 4), and controls (CTRs, n = 4) with the aim of predicting possible RNA and/or protein targets implicated in this multifactorial disease. We focused on 84 lncRNAs regulating the expression of pro-inflammatory and anti-inflammatory genes and miRNAs. In silico analysis was utilized to predict the interaction of lncRNAs with miRNAs, mRNAs, and proteins targets. Six lncRNAs were significantly down-regulated in OP patients compared to controls: CEP83-AS1, RP11-84C13.1, CTC-487M23.5, GAS5, NCBP2-AS2, and SDCBP2-AS1. Bioinformatic analyses identified HDCA2, PTX3, and FGF2 proteins as downstream targets of CTC-487M23.5, GAS5, and RP11-84C13.1 lncRNAs mediated by the interaction with miRNAs implicated in OP pathogenesis, including miR-21-5p. Altogether, these data open a new regulatory mechanism of gene expression in bone homeostasis and could direct the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Federica Centofanti
- Department of Biomedicine and Prevention, Anatomic Pathology Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.O.)
| | | | - Mario Marini
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
| | - Anna Maria Rinaldi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Monica Celi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata”, 00133 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
- IRCCS Neuromed, Unit of Medical Genetics, Via Atinense 18, 86077 Pozzilli, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.O.)
| | - Virginia Tancredi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata”, 00133 Rome, Italy;
- Department of Orthopedics and Traumatology, PTV Foundation, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
| |
Collapse
|
38
|
Yang TL, Shen H, Liu A, Dong SS, Zhang L, Deng FY, Zhao Q, Deng HW. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 2020; 16:91-103. [PMID: 31792439 PMCID: PMC6980376 DOI: 10.1038/s41574-019-0282-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a highly prevalent disorder characterized by low bone mineral density and an increased risk of fracture, termed osteoporotic fracture. Notably, bone mineral density, osteoporosis and osteoporotic fracture are highly heritable; however, determining the genetic architecture, and especially the underlying genomic and molecular mechanisms, of osteoporosis in vivo in humans is still challenging. In addition to susceptibility loci identified in genome-wide association studies, advances in various omics technologies, including genomics, transcriptomics, epigenomics, proteomics and metabolomics, have all been applied to dissect the pathogenesis of osteoporosis. However, each technology individually cannot capture the entire view of the disease pathology and thus fails to comprehensively identify the underlying pathological molecular mechanisms, especially the regulatory and signalling mechanisms. A change to the status quo calls for integrative multi-omics and inter-omics analyses with approaches in 'systems genetics and genomics'. In this Review, we highlight findings from genome-wide association studies and studies using various omics technologies individually to identify mechanisms of osteoporosis. Furthermore, we summarize current studies of data integration to understand, diagnose and inform the treatment of osteoporosis. The integration of multiple technologies will provide a road map to illuminate the complex pathogenesis of osteoporosis, especially from molecular functional aspects, in vivo in humans.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hui Shen
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Jiangsu, China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
- School of Basic Medical Science, Central South University, Changsha, China.
| |
Collapse
|
39
|
Hu W, He J, Qi L, Wang C, Yue H, Gu J, Zhang H, Wang Y, Zhang Z. Association of HIVEP3 Gene and Lnc RNA with Femoral Neck Bone Mineral Content and Hip Geometry by Genome-Wide Association Analysis in Chinese People. Int J Endocrinol 2020; 2020:6929073. [PMID: 33110425 PMCID: PMC7579678 DOI: 10.1155/2020/6929073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE GWAS has successfully located and analyzed the pathogenic genes of osteoporosis. Genetic studies have found that heritability of BMD is 50%-85% while the other half is caused by hip geometric parameters and tissue horizontal characteristics. This study was designed to study the GWAS of osteoporosis in Shanghai Han population. METHODS We collected 1224 unrelated healthy young men (20-40 years old), young women (20-40 years old), and postmenopausal women (over 50 years old) who lived in Shanghai. BMD and hip geometric parameters were measured by dual-energy X-ray absorptiometry. The genomic DNA of peripheral blood was extracted and analyzed by using Illumina Human Asian Screening Array-24 + v1.0 (ASA) gene chip. Statistical analysis was carried out to evaluate the relationship between these SNPs and BMD and hip geometric parameters. RESULTS A total of 1155 subjects were included. We found that one SNP rs35282355 located in the human immunodeficiency virus type 1 enhancer-binding protein 3 gene (HIVEP3) and another 25 SNPs located in LINC RNA were significantly correlated with bone mineral content (BMC) in the femoral neck (P= 2.30 × 10-9, P < 5 × 10-8). We also found that the correlation between SNP rs35282355 and cross-sectional area (CSA) of hip geometry was a significant marginal statistical difference (P = 5.95 × 10-8). CONCLUSIONS Through this study, we found that HIVEP3 gene and LINC RNA are potentially correlated with femoral neck BMC. These results provide important information for us to further understand the etiology and genetic pathogenesis of osteoporosis. In the future, we will expand the sample size to verify these loci and carry out molecular research.
Collapse
Affiliation(s)
- Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Jinwei He
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Luyue Qi
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Jiemei Gu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai 200233, China
| |
Collapse
|
40
|
Wang X, Zhao D, Zhu Y, Dong Y, Liu Y. Long non-coding RNA GAS5 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating the miR-135a-5p/FOXO1 pathway. Mol Cell Endocrinol 2019; 496:110534. [PMID: 31398367 DOI: 10.1016/j.mce.2019.110534] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023]
Abstract
Studies have shown that promoting the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts could protect against osteoporosis. Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) participate in BMSC osteogenic differentiation. This study aimed to investigate the role and underlying mechanism of growth arrest-specific transcript 5 (GAS5) in osteogenic differentiation. The mechanism was mainly focused on miR-135a-5p/FOXO1 pathway by gain- and loss-of function tests. GAS5 and FOXO1 expression was decreased, whereas miR-135a-5p expression was increased, in the BMSCs from osteoporotic mice. Levels of GAS5 and FOXO1 were increased and miR-135a-5p expression was decreased during osteogenic differentiation of BMSCs. Overexpression of GAS5 promoted, whereas knockdown of GAS5 suppressed, BMSC osteogenic differentiation. As for the mechanism, GAS5 functioned as a competing endogenous RNA for miR-135a-5p to regulate FOXO1 expression. In conclusion, GAS5 promoted osteogenesis of BMSCs by regulating the miR-135a-5p/FOXO1 axis. This finding suggests that targeting GAS5 may be a useful therapy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xue Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Ding Zhao
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yuzhu Zhu
- Department of Anesthesiology, Changchun Maternity Hospital, Changchun, 130000, Jilin, China
| | - Ying Dong
- The Third Department of Radiotherapy, Jilin Provincial Tumor Hospital, Changchun, 130012, Jilin, China
| | - Yijun Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
41
|
Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. Int J Mol Sci 2019; 20:ijms20143430. [PMID: 31336890 PMCID: PMC6678255 DOI: 10.3390/ijms20143430] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
The normal bone regeneration process is a complex and coordinated series of events involving different cell types and molecules. However, this process is impaired in critical-size/large bone defects, with non-unions or delayed unions remaining a major clinical problem. Novel strategies are needed to aid the current therapeutic approaches. Mesenchymal stem/stromal cells (MSCs) are able to promote bone regeneration. Their beneficial effects can be improved by modulating the expression levels of specific genes with the purpose of stimulating MSC proliferation, osteogenic differentiation or their immunomodulatory capacity. In this context, the genetic engineering of MSCs is expected to further enhance their pro-regenerative properties and accelerate bone healing. Herein, we review the most promising molecular candidates (protein-coding and non-coding transcripts) and discuss the different methodologies to engineer and deliver MSCs, mainly focusing on in vivo animal studies. Considering the potential of the MSC secretome for bone repair, this topic has also been addressed. Furthermore, the promising results of clinical studies using MSC for bone regeneration are discussed. Finally, we debate the advantages and limitations of using MSCs, or genetically-engineered MSCs, and their potential as promoters of bone fracture regeneration/repair.
Collapse
|
42
|
Ma J, Zhao N, Du L, Wang Y. Downregulation of lncRNA NEAT1 inhibits mouse mesangial cell proliferation, fibrosis, and inflammation but promotes apoptosis in diabetic nephropathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1174-1183. [PMID: 31933932 PMCID: PMC6947069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/18/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effect of long non-coding RNA nuclear enriched abundant transcript 1 (lnc-NEAT1) on mouse mesangial cells (MMCs) proliferation, apoptosis, fibrosis as well as inflammation in diabetic nephropathy (DN). MMCs (SV40 MES13 cells) were cultured under 30 mM glucose to construct DN cellular model (high glucose (HG) group); meanwhile, MMCs cultured under 5.6 mM glucose (normal glucose (NG) group) and 5.6 mM glucose plus 24.4 mM 3-O-methyl-D-glucose (osmotic control (OC) group) served as controls, and lnc-NEAT1 expression was determined by qPCR assay. Lnc-NEAT1 interference plasmids and control interference plasmids were transfected into DN cellular model as Sh-NEAT1 group and Sh-NC group. Cell proliferation, apoptosis, fibrosis, and inflammation were detected using Counting Kit-8, Annexin V/propidium iodide, western blot and quantitative polymerase chain reaction assays. Lnc-NEAT1 expression was elevated in HG group compared to NG group and OC group. Cell proliferation was decreased, and proliferative marker protein Cyclin D1 and proliferating cell nuclear antigen expressions also decreased in Sh-NEAT1 group compared to Sh-NC group. For cell apoptosis, apoptosis rate was increased, and apoptotic protein Cleaved Caspase3 expression enhanced but anti-apoptosis protein Bcl-2 expression decreased in Sh-NEAT1 group compared to Sh-NC group. For fibrosis markers (including fibronectin and collagen I) and inflammatory cytokines (including tumor necrosis factor-α, interleukin-1β and interleukin-6), their expressions were reduced in Sh-NEAT1 group compared to Sh-NC group. Lnc-NEAT1 is overexpressed, and its downregulation inhibits cell proliferation, fibrosis, and inflammation but promotes cell apoptosis in HG-induced MMCs DN cellular model.
Collapse
Affiliation(s)
- Jian Ma
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Harbin, China
| | - Na Zhao
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Harbin, China
| | - Likun Du
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Harbin, China
| | - Yang Wang
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine Harbin, China
| |
Collapse
|
43
|
Emerging role of circadian rhythm in bone remodeling. J Mol Med (Berl) 2018; 97:19-24. [PMID: 30446776 DOI: 10.1007/s00109-018-1723-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
The 24-h rhythm of behavioral and physiological processes is a typical biological phenomenon regulated by a group of circadian rhythm genes. Dysfunction of the circadian rhythm can cause a wide range of problems, such as cancer and metabolic diseases. In recent decades, increased understanding of the roles of circadian rhythm genes in the bone remodeling process have been documented, including osteoblastic bone formation, osteoclastic bone resorption, and osteoblast/osteoclast communication. A timely review of the current findings may help to facilitate the new field of circadian rhythmic bone remodeling research. Targeted pharmacological modulation of circadian rhythm genes is a possible therapeutic approach through which to overcome bone remodeling problems in the future.
Collapse
|