1
|
Tovar-Bohórquez O, McKenzie D, Crestel D, Vandeputte M, Geffroy B. Thermal modulation of energy allocation during sex determination in the European sea bass (Dicentrarchus labrax). Gene 2024; 927:148721. [PMID: 38925525 DOI: 10.1016/j.gene.2024.148721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Water temperature governs physiological functions such as growth, energy allocation, and sex determination in ectothermic species. The European sea bass (Dicentrarchus labrax) is a major species in European aquaculture, exhibiting early dimorphic growth favoring females. The species has a polygenic sex determination system that interacts with water temperature to determine an individual's sex, with two periods during development that are sensitive to temperature. The current study investigated the influence of water temperature on energy allocation and sex-biased genes during sex determination and differentiation periods. RNA-Sequencing and qPCR analyses were conducted in two separate experiments, of either constant water temperatures typical of aquaculture conditions or natural seasonal thermal regimes, respectively. We focused on eight key genes associated with energy allocation, growth regulation, and sex determination and differentiation. In Experiment 1, cold and warm temperature treatments favored female and male proportions, respectively. The RNA-seq analysis highlighted sex-dependent energy allocation transcripts, with higher levels of nucb1 and pomc1 in future females, and increased levels of egfra and spry1 in future males. In Experiment 2, a warm thermal regime favored females, while a cold regime favored males. qPCR analysis in Experiment 2 revealed that ghrelin and nucb1 were down-regulated by warm temperatures. A significant sex-temperature interaction was observed for pank1a with higher and lower expression for males in the cold and warm regimes respectively, compared to females. Notably, spry1 displayed increased expression in future males at the all-fins stage and in males undergoing molecular sex differentiation in both experimental conditions, indicating that it provides a novel, robust, and consistent marker for masculinization. Overall, our findings emphasize the complex interplay of genes involved in feeding, energy allocation, growth, and sex determination in response to temperature variations in the European sea bass.
Collapse
Affiliation(s)
| | - David McKenzie
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France
| | - Damien Crestel
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Benjamin Geffroy
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France.
| |
Collapse
|
2
|
Norland S, Eilertsen M, Rønnestad I, Helvik JV, Gomes AS. Mapping key neuropeptides involved in the melanocortin system in Atlantic salmon (Salmo salar) brain. J Comp Neurol 2023; 531:89-115. [PMID: 36217593 PMCID: PMC9828751 DOI: 10.1002/cne.25415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
The melanocortin system is a key regulator of appetite and food intake in vertebrates. This system includes the neuropeptides neuropeptide y (NPY), agouti-related peptide (AGRP), cocaine- and amphetamine-regulated transcript (CART), and pro-opiomelanocortin (POMC). An important center for appetite control in mammals is the hypothalamic arcuate nucleus, with neurons that coexpress either the orexigenic NPY/AGRP or the anorexigenic CART/POMC neuropeptides. In ray-finned fishes, such a center is less characterized. The Atlantic salmon (Salmo salar) has multiple genes of these neuropeptides due to whole-genome duplication events. To better understand the potential involvement of the melanocortin system in appetite and food intake control, we have mapped the mRNA expression of npy, agrp, cart, and pomc in the brain of Atlantic salmon parr using in situ hybridization. After identifying hypothalamic mRNA expression, we investigated the possible intracellular coexpression of npy/agrp and cart/pomc in the tuberal hypothalamus by fluorescent in situ hybridization. The results showed that the neuropeptides were widely distributed, especially in sensory and neuroendocrine brain regions. In the hypothalamic lateral tuberal nucleus, the putative homolog to the mammalian arcuate nucleus, npya, agrp1, cart2b, and pomca were predominantly localized in distinct neurons; however, some neurons coexpressed cart2b/pomca. This is the first demonstration of coexpression of cart2b/pomca in the tuberal hypothalamus of a teleost. Collectively, our data suggest that the lateral tuberal nucleus is the center for appetite control in salmon, similar to that of mammals. Extrahypothalamic brain regions might also be involved in regulating food intake, including the olfactory bulb, telencephalon, midbrain, and hindbrain.
Collapse
Affiliation(s)
- Sissel Norland
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | - Ivar Rønnestad
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Jon Vidar Helvik
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Ana S. Gomes
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
3
|
Zou JM, Zhu QS, Liang H, Lu HL, Liang XF, He S. Lysine Deprivation Regulates Npy Expression via GCN2 Signaling Pathway in Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2022; 23:ijms23126727. [PMID: 35743178 PMCID: PMC9223478 DOI: 10.3390/ijms23126727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Regulation of food intake is associated with nutrient-sensing systems and the expression of appetite neuropeptides. Nutrient-sensing systems generate the capacity to sense nutrient availability to maintain energy and metabolism homeostasis. Appetite neuropeptides are prominent factors that are essential for regulating the appetite to adapt energy status. However, the link between the expression of appetite neuropeptides and nutrient-sensing systems remains debatable in carnivorous fish. Here, with intracerebroventricular (ICV) administration of six essential amino acids (lysine, methionine, tryptophan, arginine, phenylalanine, or threonine) performed in mandarin fish (Siniperca chuatsi), we found that lysine and methionine are the feeding-stimulating amino acids other than the reported valine, and found a key appetite neuropeptide, neuropeptide Y (NPY), mainly contributes to the regulatory role of the essential amino acids on food intake. With the brain cells of mandarin fish cultured in essential amino acid deleted medium (lysine, methionine, histidine, valine, or leucine), we showed that only lysine deprivation activated the general control nonderepressible 2 (GCN2) signaling pathway, elevated α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation, increased activating transcription factor 4 (ATF4) protein expression, and finally induced transcription of npy. Furthermore, pharmacological inhibition of GCN2 and eIF2α phosphorylation signaling by GCN2iB or ISRIB, effectively blocked the transcriptional induction of npy in lysine deprivation. Overall, these findings could provide a better understanding of the GCN2 signaling pathway involved in food intake control by amino acids.
Collapse
Affiliation(s)
- Jia-Ming Zou
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang-Sheng Zhu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai-Lin Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.-M.Z.); (Q.-S.Z.); (H.L.); (H.-L.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (X.-F.L.); (S.H.); Tel.: +86-15007113487 (X.-F.L.); +86-18672986332 (S.H.); Fax: +86-027-8728-2114 (X.-F.L.); +86-027-8728-2113 (S.H.)
| |
Collapse
|
4
|
Soengas JL. Integration of Nutrient Sensing in Fish Hypothalamus. Front Neurosci 2021; 15:653928. [PMID: 33716662 PMCID: PMC7953060 DOI: 10.3389/fnins.2021.653928] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The knowledge regarding hypothalamic integration of metabolic and endocrine signaling resulting in regulation of food intake is scarce in fish. Available studies pointed to a network in which the activation of the nutrient-sensing (glucose, fatty acid, and amino acid) systems would result in AMP-activated protein kinase (AMPK) inhibition and activation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). Changes in these signaling pathways would control phosphorylation of transcription factors cAMP response-element binding protein (CREB), forkhead box01 (FoxO1), and brain homeobox transcription factor (BSX) leading to food intake inhibition through changes in the expression of neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-opio melanocortin (POMC), and cocaine and amphetamine-related transcript (CART). The present mini-review summarizes information on the topic and identifies gaps for future research.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
5
|
Kalananthan T, Lai F, Gomes AS, Murashita K, Handeland S, Rønnestad I. The Melanocortin System in Atlantic Salmon ( Salmo salar L.) and Its Role in Appetite Control. Front Neuroanat 2020; 14:48. [PMID: 32973463 PMCID: PMC7471746 DOI: 10.3389/fnana.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
The melanocortin system is a key neuroendocrine network involved in the control of food intake and energy homeostasis in vertebrates. Within the hypothalamus, the system comprises two main distinct neuronal cell populations that express the neuropeptides proopiomelanocortin (POMC; anorexigenic) or agouti-related protein (AGRP; orexigenic). Both bind to the melanocortin-4 receptor (MC4R) in higher order neurons that control both food intake and energy expenditure. This system is relatively well-conserved among vertebrates. However, in Atlantic salmon (Salmo salar L.), the salmonid-specific fourth round whole-genome duplication led to the presence of several paralog genes which might result in divergent functions of the duplicated genes. In the current study, we report the first comprehensive comparative identification and characterization of Mc4r and extend the knowledge of Pomc and Agrp in appetite control in Atlantic salmon. In silico analysis revealed multiple paralogs for mc4r (a1, a2, b1, and b2) in the Atlantic salmon genome and confirmed the paralogs previously described for pomc (a1, a2, and b) and agrp (1 and 2). All Mc4r paralogs are relatively well-conserved with the human homolog, sharing at least 63% amino acid sequence identity. We analyzed the mRNA expression of mc4r, pomc, and agrp genes in eight brain regions of Atlantic salmon post-smolt under two feeding states: normally fed and fasted for 4 days. The mc4ra2 and b1 mRNAs were predominantly and equally abundant in the hypothalamus and telencephalon, the mc4rb2 in the hypothalamus, and a1 in the telencephalon. All pomc genes were highly expressed in the pituitary, followed by the hypothalamus and saccus vasculosus. The agrp genes showed a completely different expression pattern from each other, with prevalent expression of the agrp1 in the hypothalamus and agrp2 in the telencephalon. Fasting did not induce any significant changes in the mRNA level of mc4r, agrp, or pomc paralogs in the hypothalamus or in other highly expressed regions between fed and fasted states. The identification and wide distribution of multiple paralogs of mc4r, pomc, and agrp in Atlantic salmon brain provide new insights and give rise to new questions of the melanocortin system in the appetite regulation in Atlantic salmon.
Collapse
Affiliation(s)
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Sigurd Handeland
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Research Center, NORCE Environment, Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Kalananthan T, Murashita K, Rønnestad I, Ishigaki M, Takahashi K, Silva MS, Wakabayashi Y, Lai F, Shimizu M, Nilsen TO, Pino Martinez E, Gomes AS. Hypothalamic agrp and pomc mRNA Responses to Gastrointestinal Fullness and Fasting in Atlantic Salmon ( Salmo salar, L.). Front Physiol 2020; 11:61. [PMID: 32116771 PMCID: PMC7026680 DOI: 10.3389/fphys.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
The orexigenic agouti-related protein (AgRP) and the anorexigenic pro-opiomelanocortin (POMC) are crucial players in the control of feed intake in vertebrates, yet their role in teleosts has not been fully established. Triplicate groups of Atlantic salmon (Salmo salar) post smolts were subjected to (1) fasting for 3 days (fast) and (2) normal feeding (fed), resulting in a significant (p < 0.05) upregulation of hypothalamic agrp1 transcripts levels in the fast group. Moreover, the mRNA abundance of agrp1 was significantly (p < 0.05) correlated with the stomach dry weight content. Corresponding inverse patterns were observed for pomca2, albeit not statistically significant. No significant differences were found for the other paralogues, agrp2 and pomca1 and b, between fed and fast groups. The significant correlation between stomach fullness and agrp1 mRNA expression suggests a possible link between the stomach filling/distension and satiety signals. Our study indicates that hypothalamic agrp1 acts as an orexigenic signal in Atlantic salmon.
Collapse
Affiliation(s)
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Kota Takahashi
- Department of Biology, Miyagi University of Education, Sendai, Japan
| | - Marta S Silva
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Institute of Marine Research, Bergen, Norway
| | - Yuki Wakabayashi
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Research Center, NORCE Environment, Bergen, Norway
| | - Enrique Pino Martinez
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Research Center, NORCE Environment, Bergen, Norway
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|