1
|
Zhang W, Liu Y, Jang H, Nussinov R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 2024; 32:1269-1280.e2. [PMID: 38703777 PMCID: PMC11316634 DOI: 10.1016/j.str.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Warmington E, Smith G, Chortis V, Liang R, Lippert J, Steinhauer S, Landwehr LS, Hantel C, Kiseljak-Vassiliades K, Wierman ME, Altieri B, Foster PA, Ronchi CL. PLK1 inhibitors as a new targeted treatment for adrenocortical carcinoma. Endocr Connect 2024; 13:e230403. [PMID: 37992487 PMCID: PMC10762563 DOI: 10.1530/ec-23-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive malignancy with limited treatment options. Polo-like kinase 1 (PLK1) is a promising drug target; PLK1 inhibitors (PLK1i) have been investigated in solid cancers and are more effective in TP53-mutated cases. We evaluated PLK1 expression in ACC samples and the efficacy of two PLK1i in ACC cell lines with different genetic backgrounds. PLK1 protein expression was investigated by immunohistochemistry in tissue samples and correlated with clinical data. The efficacy of rigosertib (RGS), targeting RAS/PI3K, CDKs and PLKs, and poloxin (Pol), specifically targeting the PLK1 polo-box domain, was tested in TP53-mutated NCI-H295R, MUC-1, and CU-ACC2 cells and in TP53 wild-type CU-ACC1. Effects on proliferation, apoptosis, and viability were determined. PLK1 immunostaining was stronger in TP53-mutated ACC samples vs wild-type (P = 0.0017). High PLK1 expression together with TP53 mutations correlated with shorter progression-free survival (P= 0.041). NCI-H295R showed a time- and dose-dependent reduction in proliferation with both PLK1i (P< 0.05at 100 nM RGS and 30 µM Pol). In MUC-1, a less pronounced decrease was observed (P< 0.05at 1000 nM RGS and 100 µM Pol). 100 nM RGS increased apoptosis in NCI-H295R (P< 0.001), with no effect on MUC-1. CU-ACC2 apoptosis was induced only at high concentrations (P < 0.05 at 3000 nM RGS and 100 µM Pol), while proliferation decreased at 1000 nM RGS and 30 µM Pol. CU-ACC1 proliferation reduced, and apoptosis increased, only at 100 µM Pol. TP53-mutated ACC cell lines demonstrated better response to PLK1i than wild-type CU-ACC1. These data suggest PLK1i may be a promising targeted treatment of a subset of ACC patients, pre-selected according to tumour genetic signature.
Collapse
Affiliation(s)
- Emily Warmington
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Vasileios Chortis
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Raimunde Liang
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
- Department of Neurosurgery, Technical University Munich (TMU), Munich, Germany
| | - Juliane Lippert
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sonja Steinhauer
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik Und Poliklinik III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret E Wierman
- Division of Endocrinology Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Paul A Foster
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Cristina L Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
3
|
Ghosh C, Hu J, Kebebew E. Advances in translational research of the rare cancer type adrenocortical carcinoma. Nat Rev Cancer 2023; 23:805-824. [PMID: 37857840 DOI: 10.1038/s41568-023-00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
Collapse
Affiliation(s)
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Zhang W, Liu Y, Jang H, Nussinov R. Cell cycle progression mechanisms: slower cyclin-D/CDK4 activation and faster cyclin-E/CDK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553605. [PMID: 37790340 PMCID: PMC10542123 DOI: 10.1101/2023.08.16.553605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the short G1/S phase transition. We consider the experimentally established high-level bursting of cyclin-E, and sustained duration of elevated cyclin-D expression in the cell, available experimental cellular and structural data, and comprehensive explicit solvent molecular dynamics simulations to provide the mechanistic foundation of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. Importantly, we determine the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses the compelling cell cycle regulation question and illuminates the distinct activation speeds in the G1 versus G1/S phases, which are crucial for cell function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
6
|
Lippert J, Fassnacht M, Ronchi CL. The role of molecular profiling in adrenocortical carcinoma. Clin Endocrinol (Oxf) 2022; 97:460-472. [PMID: 34750847 DOI: 10.1111/cen.14629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive cancer with still partially unknown pathogenesis, heterogenous clinical behaviour and no effective treatment for advanced stages. Therefore, there is an urgent clinical unmet need for better prognostication strategies, innovative therapies and significant improvement of the management of the individual patients. In this review, we summarize available studies on molecular prognostic markers and markers predictive of response to standard therapies as well as newly proposed drug targets in sporadic ACC. We include in vitro studies and available clinical trials, focusing on alterations at the DNA, RNA and epigenetic levels. We also discuss the potential of biomarkers to be implemented in a clinical routine workflow for improved ACC patient care.
Collapse
Affiliation(s)
- Juliane Lippert
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- College of Medical and Dental Sciences, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
7
|
Sigala S, Rossini E, Abate A, Tamburello M, Bornstein SR, Hantel C. An update on adrenocortical cell lines of human origin. Endocrine 2022; 77:432-437. [PMID: 35764904 PMCID: PMC9385758 DOI: 10.1007/s12020-022-03112-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, heterogenous and highly malignant disease. Management of ACC is dependent on disease stage with complete surgical resection as the only potentially curative option. However, advanced, un-resectable, metastatic stages and also recurrences often require systemic treatments, which are unfortunately nowadays still unsatisfactory. The scarcity of preclinical models reflecting patient heterogeneities and furthermore drug-resistant phenotypes, has hampered the progress and development of new therapies in recent years. In this review, we provide an overview on the classical models and substantial progress which has been made over the last years in context of this aggressive disease.
Collapse
Affiliation(s)
- Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Stefan R Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, WC2R 2LS, UK
- Center for Regenerative Therapies, Technische Universität Dresden, 01307, Dresden, Germany
- Paul-Langerhans-Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, 01307, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland.
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Cremaschi V, Abate A, Cosentini D, Grisanti S, Rossini E, Laganà M, Tamburello M, Turla A, Sigala S, Berruti A. Advances in adrenocortical carcinoma pharmacotherapy: what is the current state of the art? Expert Opin Pharmacother 2022; 23:1413-1424. [PMID: 35876101 DOI: 10.1080/14656566.2022.2106128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Surgery, followed or not by adjuvant mitotane, is the current mainstay of therapy for patients with early-stage adrenocortical carcinoma (ACC). Mitotane, either alone or in association with EDP (Etoposide-Doxorubicin-Cisplatin) combination chemotherapy, is the standard approach for patients with metastatic ACC. AREAS COVERED The activity of newer cytotoxic drugs, radioligands, targeted therapies and immunotherapy, both in preclinical and in clinical studies, will be reviewed in this paper. EXPERT OPINION ADIUVO trial revealed that the administration of adjuvant mitotane is not advantageous in patients with good prognosis. Future strategies are to intensify efforts in adjuvant setting in patients with high risk of relapse. In patients with advanced/metastatic disease, modern targeted therapies have shown significant cytotoxicity in preclinical studies, however, studies in ACC patients reported disappointing results so far. The absence of targeted agents specifically inhibiting the major molecular pathways of ACC growth is the main cause of the failure of these drugs. Since ACC is often antigenic but poorly immunogenic, the results of immunotherapy trials appeared inferior to those achieved in the management of patients with other malignancies. Radioligand therapy may also be a promising approach. Combination of chemotherapy plus immunotherapy could be interesting to be tested in the future.
Collapse
Affiliation(s)
- Valentina Cremaschi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Antonella Turla
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
9
|
Bornstein S, Shapiro I, Malyukov M, Züllig R, Luca E, Gelfgat E, Beuschlein F, Nölting S, Berruti A, Sigala S, Peitzsch M, Steenblock C, Ludwig B, Kugelmeier P, Hantel C. Innovative multidimensional models in a high-throughput-format for different cell types of endocrine origin. Cell Death Dis 2022; 13:648. [PMID: 35879289 PMCID: PMC9314441 DOI: 10.1038/s41419-022-05096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023]
Abstract
The adrenal gland provides an important function by integrating neuronal, immune, vascular, metabolic and endocrine signals under a common organ capsule. It is the central organ of the stress response system and has been implicated in numerous stress-related disorders. While for other diseases, regeneration of healthy organ tissue has been aimed at such approaches are lacking for endocrine diseases - with the exception of type-I-diabetes. Moreover, adrenal tumor formation is very common, however, appropriate high-throughput applications reflecting the high heterogeneity and furthermore relevant 3D-structures in vitro are still widely lacking. Recently, we have initiated the development of standardized multidimensional models of a variety of endocrine cell/tissue sources in a new multiwell-format. Firstly, we confirmed common applicability for pancreatic pseudo-islets. Next, we translated applicability for spheroid establishment to adrenocortical cell lines as well as patient material to establish spheroids from malignant, but also benign adrenal tumors. We aimed furthermore at the development of bovine derived healthy adrenal organoids and were able to establish steroidogenic active organoids containing both, cells of cortical and medullary origin. Overall, we hope to open new avenues for basic research, endocrine cancer and adrenal tissue-replacement-therapies as we demonstrate potential for innovative mechanistic insights and personalized medicine in endocrine (tumor)-biology.
Collapse
Affiliation(s)
- Stefan Bornstein
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland ,grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Igor Shapiro
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Maria Malyukov
- grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Richard Züllig
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Edlira Luca
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Evgeny Gelfgat
- grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Felix Beuschlein
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland ,grid.411095.80000 0004 0477 2585Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland ,grid.411095.80000 0004 0477 2585Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 München, Germany
| | - Alfredo Berruti
- grid.7637.50000000417571846Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Sandra Sigala
- grid.7637.50000000417571846Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mirko Peitzsch
- grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany ,grid.412282.f0000 0001 1091 2917Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Barbara Ludwig
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland ,grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | - Constanze Hantel
- grid.412004.30000 0004 0478 9977Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland ,grid.412282.f0000 0001 1091 2917Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| |
Collapse
|
10
|
Targeted Therapy for Adrenocortical Carcinoma: A Genomic-Based Search for Available and Emerging Options. Cancers (Basel) 2022; 14:cancers14112721. [PMID: 35681700 PMCID: PMC9179357 DOI: 10.3390/cancers14112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/07/2022] Open
Abstract
In rare diseases such as adrenocortical carcinoma (ACC), in silico analysis can help select promising therapy options. We screened all drugs approved by the FDA and those in current clinical studies to identify drugs that target genomic alterations, also known to be present in patients with ACC. We identified FDA-approved drugs in the My Cancer Genome and National Cancer Institute databases and identified genetic alterations that could predict drug response. In total, 155 FDA-approved drugs and 905 drugs in clinical trials were identified and linked to 375 genes of 89 TCGA patients. The most frequent potentially targetable genetic alterations included TP53 (20%), BRD9 (13%), TERT (13%), CTNNB1 (13%), CDK4 (7%), FLT4 (7%), and MDM2 (7%). We identified TP53-modulating drugs to be possibly effective in 20-26% of patients, followed by the Wnt signaling pathway inhibitors (15%), Telomelysin and INO5401 (13%), FHD-609 (13%), etc. According to our data, 67% of ACC patients exhibited genomic alterations that might be targeted by FDA-approved drugs or drugs being tested in current clinical trials. Although there are not many current therapy options directly targeting reported ACC alterations, this study identifies emerging options that could be tested in clinical trials.
Collapse
|
11
|
Sigala S, Bothou C, Penton D, Abate A, Peitzsch M, Cosentini D, Tiberio GAM, Bornstein SR, Berruti A, Hantel C. A Comprehensive Investigation of Steroidogenic Signaling in Classical and New Experimental Cell Models of Adrenocortical Carcinoma. Cells 2022; 11:1439. [PMID: 35563746 PMCID: PMC9103477 DOI: 10.3390/cells11091439] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Adrenocortical carcinoma is a heterogeneous and aggressive cancer that originates from steroidogenic cells within the adrenal cortex. In this study, we have assessed for the preclinical gold standard NCI-H295 in direct comparison with the more recently established MUC-1 and a here newly reported ACC cell line (TVBF-7) the mutational status of important driver genes (TP53, MEN1, PRKAR1A, CTNNB1, APC, ZNRF-3, IGF-2, EGFR, RB1, BRCA1, BRCA2, RET, GNAS and PTEN), Wnt-signaling specificities (CTNNB1 mutation vs. APC mutation vs. wildtype), steroidogenic-(CYP11A1, CYP17A1, HSD3B2, HSD17B4, CYP21A2, CYP11B1, CYP11B2, MC2R, AT1R) and nuclear-receptor-signaling (AR, ER, GCR), varying electrophysiological potentials as well as highly individual hormone secretion profiles (Cortisol, Aldosterone, DHEA, DHEAS, Testosterone, 17-OH Progesterone, among others) which were investigated under basal and stimulated conditions (ACTH, AngII, FSK). Our findings reveal important genetic and pathophysiological characteristics for these three cell lines and reveal the importance of such cell-line panels reflecting differential endocrine functionalities to thereby better reflect clinically well-known ACC patient heterogeneities in preclinical studies.
Collapse
Affiliation(s)
- Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy; (S.S.); (A.A.)
| | - Christina Bothou
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zürich, Switzerland; (C.B.); (S.R.B.)
| | - David Penton
- Electrophysiology Facility (e-phac), Department of Molecular Life Sciences, University of Zurich (UZH), 8057 Zürich, Switzerland;
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy; (S.S.); (A.A.)
| | - Mirko Peitzsch
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany;
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25124 Brescia, Italy; (D.C.); (A.B.)
| | - Guido A. M. Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, 25124 Brescia, Italy;
| | - Stefan R. Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zürich, Switzerland; (C.B.); (S.R.B.)
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany;
- Diabetes and Nutritional Sciences, King’s College London, London WC2R 2LS, UK
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
- Paul-Langerhans-Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25124 Brescia, Italy; (D.C.); (A.B.)
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zürich, Switzerland; (C.B.); (S.R.B.)
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany;
| |
Collapse
|
12
|
Abate A, Rossini E, Tamburello M, Laganà M, Cosentini D, Grisanti S, Fiorentini C, Tiberio GAM, Scatolini M, Grosso E, Hantel C, Memo M, Berruti A, Sigala S. Ribociclib Cytotoxicity Alone or Combined With Progesterone and/or Mitotane in in Vitro Adrenocortical Carcinoma Cells. Endocrinology 2022; 163:6455501. [PMID: 34875044 DOI: 10.1210/endocr/bqab248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Mitotane is the only approved drug for treating adrenocortical carcinoma (ACC). The regimen added to mitotane is chemotherapy with etoposide, doxorubicin, and cisplatin. This pharmacological approach, however, has a limited efficacy and significant toxicity. Target-therapy agents represent a new promising approach to cancer therapy. Among these, a preeminent role is played by agents that interfere with cell-cycle progression, such as CDK4/6-inhibitors. Here, we investigate whether ribociclib could induce a cytotoxic effect both in ACC cell line and patient-derived primary cell cultures, alone or in combined settings. Cell viability was determined by 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide assay, whereas cell proliferation was evaluated by direct count. Binary combination experiments were performed using Chou and Talalay method. Gene expression was analyzed by quantitative RT-PCR, whereas protein expression was evaluated by immunofluorescence. A double staining assay revealed that ribociclib induced a prevalent apoptotic cell death. Cell-cycle analysis was performed to evaluate the effect of ribociclib treatment on cell-cycle progression in ACC cell models. Our results indicate that ribociclib was cytotoxic and reduced the cell proliferation rate. The effect on cell viability was enhanced when ribociclib was combined with progesterone and/or mitotane. The effect of ribociclib on cell-cycle progression revealed a drug-induced cell accumulation in G2 phase. The positive relationship underlined by our results between ribociclib, progesterone, and mitotane strengthen the clinical potential of this combination.
Collapse
Affiliation(s)
- Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Guido A M Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, Brescia, 25123, Italy
| | - Maria Scatolini
- Molecular Oncology Laboratory, "Edo ed Elvo Tempia" Foundation, Ponderano, 13875, Biella, Italy
| | - Enrico Grosso
- Molecular Oncology Laboratory, "Edo ed Elvo Tempia" Foundation, Ponderano, 13875, Biella, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| |
Collapse
|
13
|
Altieri B, Lalli E, Faggiano A. Mitotane treatment in adrenocortical carcinoma: mechanisms of action and predictive markers of response to therapy. Minerva Endocrinol (Torino) 2021; 47:203-214. [PMID: 34881855 DOI: 10.23736/s2724-6507.21.03601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Adrenocortical carcinoma (ACC) is a rare malignancy with a high risk of recurrence even in cases with complete surgical tumor resection. Mitotane represents the cornerstone of the adjuvant therapy as well as the first line of medical treatment in advanced cases. However, evidence on mitotane efficacy is mostly based on retrospective studies and the use of mitotane continues to represent a clinical challenge. EVIDENCE ACQUISITION Mitotane causes selective damage to adrenocortical cells, causing an increase of cell apoptosis through a disruption of mitochondria and the induction of the endoplasmic reticulum stress. Different clinical and molecular markers predicting response to mitotane have been proposed with uncertain results. Attainment of mitotane plasma levels within the target range of 14 to 20 mg/L represent the strongest predictor of mitotane effectiveness both in adjuvant and advanced tumor setting. The occurrence of late recurrence after primary ACC diagnosis and changes in metabolic activity on FDG-PET are only weakly associated with mitotane response. Among the proposed molecular markers associated with mitotane efficacy, the investigation of the CYP2W1*6 and CYP2B6*6 single nucleotide polymorphisms appears to be currently the most promising predictive molecular markers of mitotane therapy. However, none of the evaluated markers has been validated for clinical use. CONCLUSIONS In the era of precision medicine, a better insight into mitotane molecular mechanisms as well as the potential use in the daily clinical practice of clinical parameters and molecular markers predicting the individual response to mitotane are urgently needed.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany -
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France.,Université Côte d'Azur, Valbonne, France.,INSERM, Valbonne, France
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment. Cancers (Basel) 2021; 13:cancers13164200. [PMID: 34439352 PMCID: PMC8391410 DOI: 10.3390/cancers13164200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The current clinical gold standard etoposide, doxorubicin, cisplatin, and mitotane (EDP-M) is not satisfying for the treatment of adrenocortical carcinoma (ACC). However, clinical translation of novel, preclinically promising therapies were unfortunately disappointing in recent years, indicating that utilized tumor models inadequately predicted clinical applicability of novel pharmacological approaches. In an attempt to optimize the current preclinical armamentarium, our workgroup initiated a comparative drug screen of clinically relevant chemotherapies and therapies targeting IGF, EGF, and Wnt signaling pathways in the classical NCI-H295R cell line and, for the first time, in the recently developed highly drug-resistant MUC-1 cell line. These testings revealed gemcitabine and cisplatin as a promising combination, but further investigations also indicated developing drug resistance mechanisms on the molecular level. We aimed to decipher underlying resistance mechanisms, identified ribonucleotide reductase as an important player, and successfully targeted the involved DNA damage/repair mechanism. Abstract Current systemic treatment options for patients with adrenocortical carcinomas (ACCs) are far from being satisfactory. DNA damage/repair mechanisms, which involve, e.g., ataxia-telangiectasia-mutated (ATM) and ataxia-telangiectasia/Rad3-related (ATR) protein signaling or ribonucleotide reductase subunits M1/M2 (RRM1/RRM2)-encoded ribonucleotide reductase (RNR) activation, commonly contribute to drug resistance. Moreover, the regulation of RRM2b, the p53-induced alternative to RRM2, is of unclear importance for ACC. Upon extensive drug screening, including a large panel of chemotherapies and molecular targeted inhibitors, we provide strong evidence for the anti-tumoral efficacy of combined gemcitabine (G) and cisplatin (C) treatment against the adrenocortical cell lines NCI-H295R and MUC-1. However, accompanying induction of RRM1, RRM2, and RRM2b expression also indicated developing G resistance, a frequent side effect in clinical patient care. Interestingly, this effect was partially reversed upon addition of C. We confirmed our findings for RRM2 protein, RNR-dependent dATP levels, and modulations of related ATM/ATR signaling. Finally, we screened for complementing inhibitors of the DNA damage/repair system targeting RNR, Wee1, CHK1/2, ATR, and ATM. Notably, the combination of G, C, and the dual RRM1/RRM2 inhibitor COH29 resulted in previously unreached total cell killing. In summary, we provide evidence that RNR-modulating therapies might represent a new therapeutic option for ACC.
Collapse
|
15
|
Pozdeyev N, Fishbein L, Gay LM, Sokol ES, Hartmaier R, Ross JS, Darabi S, Demeure MJ, Kar A, Foust L, Koc K, Bowles DW, Leong S, Wierman ME, Kiseljak-Vassiliades K. Targeted genomic analysis of 364 adrenocortical carcinomas. Endocr Relat Cancer 2021; 28:671-681. [PMID: 34410225 PMCID: PMC8384129 DOI: 10.1530/erc-21-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Despite recent advances in elucidating molecular pathways underlying adrenocortical carcinoma (ACC), this orphan malignancy is associated with poor survival. Identification of targetable genomic alterations is critical to improve outcomes. The objective of this study was to characterize the genomic profile of a large cohort of patient ACC samples to identify actionable genomic alterations. Three hundred sixty-four individual patient ACC tumors were analyzed. The median age of the cohort was 52 years and 60.9% (n = 222) were female. ACC samples had common alterations in epigenetic pathways with 38% of tumors carrying alterations in genes involved in histone modification, 21% in telomere lengthening, and 21% in SWI/SNF complex. Tumor suppressor genes and WNT signaling pathway were each mutated in 51% of tumors. Fifty (13.7%) ACC tumors had a genomic alteration in genes involved in the DNA mismatch repair (MMR) pathway with many tumors also displaying an unusually high number of mutations and a corresponding MMR mutation signature. In addition, genomic alterations in several genes not previously associated with ACC were observed, including IL7R, LRP1B, FRS2 mutated in 6, 8 and 4% of tumors, respectively. In total, 58.5% of ACC (n = 213) had at least one potentially actionable genomic alteration in 46 different genes. As more than half of ACC have one or more potentially actionable genomic alterations, this highlights the value of targeted sequencing for this orphan cancer with a poor prognosis. In addition, significant incidence of MMR gene alterations suggests that immunotherapy is a promising therapeutic for a considerable subset of ACC patients.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Division of Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | | | | | | | - Jeffrey S. Ross
- Foundation Medicine Inc. Cambridge Massachusetts
- Departments of Pathology and Urology, Upstate Medical University, Syracuse, New York
| | - Sourat Darabi
- Hoag Family Center Institute, Newport Beach, California
| | - Michael J. Demeure
- Hoag Family Center Institute, Newport Beach, California
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Lindsey Foust
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Katrina Koc
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Daniel W. Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Colorado
- Research Service Veterans Affairs Medical Center, Aurora Colorado 80045
| |
Collapse
|
16
|
Hashimoto H, Kaku-Ito Y, Oda Y, Ito T. CDK4: A Novel Therapeutic Target for Extramammary Paget's Disease. Front Oncol 2021; 11:710378. [PMID: 34395284 PMCID: PMC8358779 DOI: 10.3389/fonc.2021.710378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The outcome of extramammary Paget's disease (EMPD) is poor when it progresses to metastasis because of the lack of effective systemic therapies. Recently, CDK4-targeted therapy has attracted attention as a potential therapeutic target for some cancers. The aim of this study was to analyze the impact of CDK4 expression on the survival of patients with EMPD. METHODS We retrospectively reviewed 110 patients with EMPD. We conducted immunohistochemical analysis of CDK4 and cyclin D1 expression, and assessed the association between their expression and survival. RESULTS Most EMPD lesions (108/110, 98.2%) were positive for CDK4 staining and there was a positive correlation between CDK4 expression and cyclin D1 expression (r = 0.54, p < 0.001). Tumor thickness (p = 0.0003) and the presence of regional lymph node metastasis (p = 0.015) were significantly associated with high CDK4 expression. Regarding invasive EMPD, the multivariate analysis did not show the correlation between the expression of CDK4/cyclin D1 and survival outcomes (HR: 3.14, p = 0.14). CONCLUSION The overexpression of CDK4 was identified as a major risk factor for disease progression. CDK4-targeted therapy could thus be a novel treatment option for unresectable EMPD.
Collapse
Affiliation(s)
- Hiroki Hashimoto
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Virgone C, Roganovic J, Vorwerk P, Redlich A, Schneider DT, Janic D, Bien E, López-Almaraz R, Godzinski J, Osterlundh G, Stachowicz-Stencel T, Brugières L, Brecht IB, Thomas-Teinturier C, Fresneau B, Surun A, Ferrari A, Bisogno G, Orbach D. Adrenocortical tumours in children and adolescents: The EXPeRT/PARTNER diagnostic and therapeutic recommendations. Pediatr Blood Cancer 2021; 68 Suppl 4:e29025. [PMID: 34174161 DOI: 10.1002/pbc.29025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/12/2022]
Abstract
Adrenocortical tumours (ACTs) are rare during childhood. A complete surgical resection provides the best chance of cure, but the role and efficacy of the adjuvant therapy are still controversial. Various histologic criteria of malignancy for ACTs adopted in children do not facilitate comparative studies and are not completely shared. Therefore, a sharp demarcation between benign and malignant lesions has not been recognised, making it difficult to identify who potentially needs perioperative therapy. This manuscript presents the internationally harmonised recommendations for the diagnosis and treatment of ACTs in children and adolescents, established by the European Cooperative Study Group for Paediatric Rare Tumours (EXPeRT) group within the EU-funded project PARTNER (Paediatric Rare Tumours Network - European Registry).
Collapse
Affiliation(s)
- Calogero Virgone
- Pediatric Surgery, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Jelena Roganovic
- Department of Pediatrics, Clinical Hospital Center Rijeka, University of Rijeka, Rijeka, Croatia
| | - Peter Vorwerk
- Pediatric Oncology Department, Otto von Guericke University Children´s Hospital, Magdeburg, Germany
| | - Antje Redlich
- Pediatric Oncology Department, Otto von Guericke University Children´s Hospital, Magdeburg, Germany
| | | | - Dragana Janic
- Department of Hematology and Oncology, University Children's Hospital, University of Belgrade, Belgrade, Serbia
| | - Ewa Bien
- Department of Pediatrics, Hematology and Oncology, Medical University, Gdansk, Poland
| | - Ricardo López-Almaraz
- Pediatric Hematology and Oncology Unit, Hospital Universitario de Cruces, Barakaldo-Bizkaia, Spain
| | - Jan Godzinski
- Department of Pediatric Surgery, Marciniak Hospital, Wroclaw, Poland.,Department of Pediatric Traumatology and Emergency Medicine, Medical University, Wroclaw, Poland
| | - Gustaf Osterlundh
- Department of Pediatrics, The Queen Silvia Children's Hospital, University of Gothenburg, Gothenburg, Sweden
| | | | - Laurence Brugières
- Gustave Roussy Cancer Center, Department of Children and Adolescents Oncology, Paris-Saclay University, Villejuif, France
| | - Ines B Brecht
- Pediatric Oncology and Hematology, University Children's Hospital, Tuebingen, Germany
| | - Cécile Thomas-Teinturier
- Assistance Publique Hôpitaux de Paris (APHP), Department of Endocrinology and Diabetes for Children, Bicêtre Paris-Sud, Le Kremlin Bicêtre, Paris, France
| | - Brice Fresneau
- Gustave Roussy Cancer Center, Department of Children and Adolescents Oncology, Paris-Saclay University, Villejuif, France.,Paris-Saclay University, Paris-Sud University, Paris, France
| | - Aurore Surun
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Gianni Bisogno
- Hematology-Oncology Division, Department of Women's and Children's Health, University Hospital, Padua, Italy
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| |
Collapse
|
18
|
Sukrithan V, Husain M, Kirschner L, Shah MH, Konda B. Emerging drugs for the treatment of adrenocortical carcinoma. Expert Opin Emerg Drugs 2021; 26:165-178. [PMID: 33896321 DOI: 10.1080/14728214.2021.1920922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Adrenocortical cancer (ACC) is a rare and aggressive disease with a median survival of 14-17 months and 5-year survival of around 20% for advanced disease. Emerging evidence of sub-groups of ACC with specific molecular drivers indicate ACC may be amenable to inhibition of receptor tyrosine kinases involved in growth and angiogenic signaling. A significant subset of patients may also be responsive to immune strategies.Areas covered: This review outlines approaches of targeting upregulated growth pathways including Insulin-like Growth Factor, Vascular Endothelial Growth Factor, Fibroblast Growth Factor and Epidermal Growth Factor Receptor in ACC. Data of immune checkpoint blockade with nivolumab, ipilimumab, pembrolizumab and avelumab is explored in detail. Genomic studies indicate that up to 40% of ACC are driven by dysregulated WNT and glucocorticoid signaling, special focus is placed on emerging drugs in these pathways.Expert opinion: Progress in the treatment of ACC has faced challenges stemming from the rarity of the disease. Given recent advances in the understanding of the molecular pathogenesis of ACC, a window of opportunity has now opened to make significant progress in developing therapeutic options that target key pathways such as excessive glucocorticoid signaling, WNT signaling, cell cycle and immune checkpoints.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Marium Husain
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Lawrence Kirschner
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Manisha H Shah
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| | - Bhavana Konda
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and Arthur G. James Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
19
|
Mizdrak M, Tičinović Kurir T, Božić J. The Role of Biomarkers in Adrenocortical Carcinoma: A Review of Current Evidence and Future Perspectives. Biomedicines 2021; 9:174. [PMID: 33578890 PMCID: PMC7916711 DOI: 10.3390/biomedicines9020174] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy arising from the adrenal cortex often with unexpected biological behavior. It can occur at any age, with two peaks of incidence: in the first and between fifth and seventh decades of life. Although ACC are mostly hormonally active, precursors and metabolites, rather than end products of steroidogenesis are produced by dedifferentiated and immature malignant cells. Distinguishing the etiology of adrenal mass, between benign adenomas, which are quite frequent in general population, and malignant carcinomas with dismal prognosis is often unfeasible. Even after pathohistological analysis, diagnosis of adrenocortical carcinomas is not always straightforward and represents a great challenge for experienced and multidisciplinary expert teams. No single imaging method, hormonal work-up or immunohistochemical labelling can definitively prove the diagnosis of ACC. Over several decades' great efforts have been made in finding novel reliable and available diagnostic and prognostic factors including steroid metabolome profiling or target gene identification. Despite these achievements, the 5-year mortality rate still accounts for approximately 75% to 90%, ACC is frequently diagnosed in advanced stages and therapeutic options are unfortunately limited. Therefore, imperative is to identify new biological markers that can predict patient prognosis and provide new therapeutic options.
Collapse
Affiliation(s)
- Maja Mizdrak
- Department of Nephrology and Hemodialysis, University Hospital of Split, 21000 Split, Croatia;
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Tina Tičinović Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
- Department of Endocrinology, Diabetes and Metabolic Disorders, University Hospital of Split, 21000 Split, Croatia
| | - Joško Božić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| |
Collapse
|
20
|
Amodru V, Garcia ME, Libe R, Brue T, Reznik Y, Castinetti F. Medical management of adrenocortical carcinoma: Current recommendations, new therapeutic options and future perspectives. ANNALES D'ENDOCRINOLOGIE 2020; 82:52-58. [PMID: 33279475 DOI: 10.1016/j.ando.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Adrenocortical carcinoma is a rare malignant tumor of poor prognosis, frequently requiring additional treatments after initial surgery. Due to its adrenolytic action, mitotane has become the first-line medical treatment in patients with aggressive adrenocortical carcinoma. Over the last 2years, apart from the classical chemotherapy based on etoposide and platinum salts, several studies reported the use of drugs such as temozolomide, tyrosine kinase inhibitors or immunotherapy, with more or less convincing results. The aim of this review is to give further insights in the use of these drugs, and to describe potential therapeutic perspectives based on recent pangenomic studies, for the future management of these still difficult to treat tumors.
Collapse
Affiliation(s)
- Vincent Amodru
- Aix-Marseille University, Marseille Medical Genetics, INSERM, Department of endocrinology, La Conception Hospital, Marseille, France
| | - Marie-Eve Garcia
- Aix-Marseille University, Assistance publique-Hôpitaux de Marseille, Multidisciplinary Oncology & Therapeutic Innovations department, Marseille, France
| | - Rossella Libe
- Réseau National "ENDOCAN-COMETE-Cancers de la surrénale", Service d'Endocrinologie, Hôpital Cochin, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | - Thierry Brue
- Aix-Marseille University, Marseille Medical Genetics, INSERM, Department of endocrinology, La Conception Hospital, Marseille, France
| | - Yves Reznik
- Department of Endocrinology-Diabetology, Caen University Hospital, Caen, France
| | - Frederic Castinetti
- Aix-Marseille University, Marseille Medical Genetics, INSERM, Department of endocrinology, La Conception Hospital, Marseille, France.
| |
Collapse
|
21
|
Altieri B, Ronchi CL, Kroiss M, Fassnacht M. Next-generation therapies for adrenocortical carcinoma. Best Pract Res Clin Endocrinol Metab 2020; 34:101434. [PMID: 32622829 DOI: 10.1016/j.beem.2020.101434] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Almost one decade ago, etoposide, doxorubicin, cisplatin and mitotane (EDP-M) has been established as first-line systemic therapy of metastatic adrenocortical carcinoma (ACC). Although heterogeneous, the prognosis of advanced stage ACC is still poor and novel treatments are urgently needed. This article provides a short summary of current systemic ACC treatment and provides a comprehensive overview of new therapeutic approaches that have been investigated in the past years, including drugs targeting the IGF pathway, tyrosine kinase inhibitors, radionuclide treatment, and immunotherapy. The results of most of these trials were disappointing and we will discuss possible reasons why these drugs failed (e.g. drug interactions with mitotane, disease heterogeneity with exceptional responses in very few patients, and resistance mechanisms to immunotherapy). We then will present potential new drug targets that have emerged from many molecular studies (e.g. wnt/β-catenin, cyclin-dependent kinases, PARP1) that may be the foundation of next-generation therapies of ACC.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|