1
|
Gan X, Dai G, Li Y, Xu L, Liu G. Intricate roles of estrogen and estrogen receptors in digestive system cancers: a systematic review. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0224. [PMID: 39475214 PMCID: PMC11523274 DOI: 10.20892/j.issn.2095-3941.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Gender disparities are evident across different types of digestive system cancers, which are typically characterized by a lower incidence and mortality rate in females compared to males. This finding suggests a potential protective role of female steroid hormones, particularly estrogen, in the development of these cancers. Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors (ERs), including the classic (ERα and ERβ) and non-traditional ERs [G protein-coupled estrogen receptor (GPER)]. Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers. In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers, including hepatocellular, pancreatic, esophageal, gastric, and colorectal carcinoma. Furthermore, we discuss the potential molecular mechanisms underlying ERα, ERβ, and GPER effects, and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs. The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved. Additionally, deciphering the intricate roles of estrogen, ERs, and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers, eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies.
Collapse
Affiliation(s)
- Xiaoning Gan
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | - Guanqi Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yonghao Li
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Lin Xu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guolong Liu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
2
|
Alherz FA. Human sulfotransferase SULT2B1 physiological role and the impact of genetic polymorphism on enzyme activity and pathological conditions. Front Genet 2024; 15:1464243. [PMID: 39280099 PMCID: PMC11392796 DOI: 10.3389/fgene.2024.1464243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Human SULT2B1gene is responsible for expressing SULT2B1a and SULT2B1b enzymes, which are phase II metabolizing enzymes known as pregnenolone and cholesterol sulfotransferase (SULT), respectively. They are expressed in several tissues and contribute to steroids and hydroxysteroids homeostasis. Genetic variation of the SULT2B1 is reported to be associated with various pathological conditions, including autosomal recessive ichthyosis, cardiovascular disease, and different types of cancers. Understanding the pathological impact of SULT2B1 genetic polymorphisms in the human body is crucial to incorporating these findings in evaluating clinical conditions or improving therapeutic efficacy. Therefore, this paper summarized the most relevant reported studies concerning SULT2B1 expression, tissue distribution, substrates, and reported genetic polymorphisms and their mechanisms in enzyme activity and pathological conditions.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Xu J, Liu X, Huang Z, Lu T, Zhang Y, Cai D, Li X. XRCC2 knockdown effectively sensitizes esophageal cancer to albumin-paclitaxel in vitro and in vivo. Biochem Genet 2024:10.1007/s10528-024-10885-4. [PMID: 39048769 DOI: 10.1007/s10528-024-10885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Esophageal cancer (EC), a prevalent malignancy, has a high incidence and mortality. X-ray repair cross complementing 2 (XRCC2) functions on DNA damage and repair that works the progression of various cancers. Nevertheless, the role and mechanism of XRCC2 remain unknown in EC. The XRCC2 expression was examined by reverse transcription quantitative polymerase chain reaction and western blot. The function of XRCC2 in EC were investigated through cell counting kit-8, colony formation, transwell, flow cytometry, chromatin immunoprecipitation, luciferase, and western blot experiments. Besides, the role of XRCC2 in EC was assessed by western blot and immunohistochemistry experiments after nude mice were injected with EC109 cells and treated with nab-paclitaxel. The XRCC2 expression was upregulated in EC. Knockdown of XRCC2 diminished cell viability, and the number of colonies, migration cells and invasion cells of KYSE150 and EC109 cells. Silencing of XRCC2 diminished the cell viability of both two cells with a lower IC50, whereas boosted the apoptosis rate of both cells with the treatment of albumin-paclitaxel. All these outcomes were reverse with the upregulation of XRCC2 in both two cells. Mechanically, XRCC2 was transcriptionally regulated by specificity protein 1 (SP1), and silencing of SP1 inhibited the cell growth of EC. In vivo, transfection of shXRCC2 with or without albumin-paclitaxel treatment both decreased the tumor size and weight, as well as the expression of XRCC2 and Ki-67 in xenografted mice. XRCC2 transcriptionally regulated by SP2 promoted proliferation, migration, invasion, and chemoresistance of EC cells.
Collapse
Affiliation(s)
- Jia Xu
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Xiaoyuan Liu
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Zebo Huang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Ying Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China
| | - Dongyan Cai
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Xia Li
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
4
|
Thakare E, Chaudhary M, Gadbail A. A prospective study of circulating estrogen in oral leukoplakia and oral squamous cell carcinoma. J Cancer Res Ther 2024; 20:1370-1375. [PMID: 38102904 DOI: 10.4103/jcrt.jcrt_2377_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/14/2022] [Indexed: 12/17/2023]
Abstract
BACKGROUND Reports suggested that hormone replacement therapy decreased the incidence of squamous cell carcinoma (SCC) of the oral cavity. AIM The aim of this study was to analyze and quantify the serum 17β-estradiol (E2) level by chemiluminescence immunoassay in four groups, Group I (control group with no habit of tobacco and areca), Group II (control group with a habit of tobacco and areca), Group III (potentially malignant disorder-leukoplakia), and Group IV (oral squamous cell carcinoma (OSCC)). It was the first study to evaluate E2 in four study groups with and without the habit of tobacco. METHOD The serum analysis was carried out in Cobas e411 analyzer by electrochemiluminescence immunoassay analysis. RESULTS As per the Kruskal--Wallis test, statistically significant rise in estradiol levels in Group IV as in comparison to Group III as compared with Groups II and I. CONCLUSION This study proved that irrespective of the gender bias, the female sex hormone, estradiol levels were significantly raised in OSCC patients. This study suggests that E2 may play a vital role in determining the patient prognosis in OSCC with tobacco habit. The confounding results of this preliminary study opened up new advents emphasizing the role of E2 in OSCC. The role of E2 in estrogen receptor regulation can also be a subject of study for targeted therapies in improving the patient's prognosis.
Collapse
Affiliation(s)
- Eesha Thakare
- Department of Oral Pathology and Microbiology, Nanded Rural Dental College, Nanded, Maharashtra, India
| | - Minal Chaudhary
- Professor and Director (Examination, Assessment and Evaluation), Datta Meghe Institute of Medical Sciences (Deemed to be University), Nagpur, Maharashtra, India
| | - Amol Gadbail
- Department of Dentistry, Shree Bhausaheb Hire Medical College and Hospital, Dhule, Maharashtra, India
| |
Collapse
|
5
|
Pilutin A, Rzeszotek S, Wilk A, Klimaszewska K, Łukasiewicz J, Mafuta RL, Nagendran T, Ndambara R, Wiszniewska B. Effects of Letrozole Treatment and Vitamin C Supplementation on Morphology, Endoplasmic Reticulum Stress, Programmed Cell Death, and Oxidative Stress in the Small Intestine of Adult Male Rats. Curr Issues Mol Biol 2024; 46:1943-1954. [PMID: 38534743 DOI: 10.3390/cimb46030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Estrogens are hormones that play an important role in the digestive tract, including in men. Letrozole is an inhibitor of cytochrome P450 aromatase, an enzyme converting androgens to estrogens. The use of letrozole may cause oxidative stress and endoplasmic reticulum stress in the cells. Factors modulating cellular stress may include vitamin C. The purpose of this study was to examine whether letrozole and/or vitamin C supplementation can affect the morphology of the small intestine, the parameters of endoplasmic reticulum stress, programmed cell death markers, and oxidative damage. Three-month-old male rats were divided into four groups and treated with the following: (I) CTRL-water; (II) CTRL+C-L-ascorbic acid; (III) LET-letrozole; and (IV) LET+C-letrozole + L-ascorbic acid. The morphometrical measurements included epithelial thickness, crypt and lumen area, crypt perimeter, nuclei number in the crypt, and the cell size of crypts. The expression levels of PERK, caspase-3, and catalase were determined. Significant differences in the morphometrical measurements and immunoexpression were observed. This may indicate that chronic treatment with letrozole can affect morphology and induce ER stress, oxidative stress, and programmed cell death in the epithelial cells of the small intestine of adult male rats. Vitamin C supplementation exerts an effect on some parameters of the molecular processes.
Collapse
Affiliation(s)
- Anna Pilutin
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Sylwia Rzeszotek
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Aleksandra Wilk
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Klaudia Klimaszewska
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Julia Łukasiewicz
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Rufaro Lynnette Mafuta
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Thanushan Nagendran
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Rupia Ndambara
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Zhang J, Chen Y, Chen B, Sun D, Sun Z, Liang J, Liang J, Xiong X, Yan H. The dual effect of endoplasmic reticulum stress in digestive system tumors and intervention of Chinese botanical drug extracts: a review. Front Pharmacol 2024; 15:1339146. [PMID: 38449811 PMCID: PMC10917068 DOI: 10.3389/fphar.2024.1339146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for maintaining human health, and once imbalanced, it will trigger endoplasmic reticulum stress (ERS), which participates in the development of digestive system tumors and other diseases. ERS has dual effect on tumor cells, activating adaptive responses to promote survival or inducing apoptotic pathways to accelerate cell death of the tumor. Recent studies have demonstrated that Chinese botanical drug extracts can affect the tumor process of the digestive system by regulating ERS and exert anticancer effects. This article summarizes the dual effect of ERS in the process of digestive system tumors and the intervention of Chinese botanical drug extracts in recent years, as reference for the combined treatment of digestive system tumors with Chinese and modern medicine.
Collapse
Affiliation(s)
- Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanyu Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Junwei Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Xiong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hua Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
7
|
Xu H, Du QC, Wang XY, Zhou L, Wang J, Ma YY, Liu MY, Yu H. Comprehensive analysis of the relationship between cuproptosis-related genes and esophageal cancer prognosis. World J Clin Cases 2022; 10:12089-12103. [PMID: 36483804 PMCID: PMC9724515 DOI: 10.12998/wjcc.v10.i33.12089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/18/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors of the digestive system, with a 5-year survival rate of 15% to 50%. Cuproptosis, a unique kind of cell death driven by protein lipoylation, is strongly connected to mitochondrial metabolism. The clinical implications of cuproptosis-related genes in esophageal cancer, however, are mainly unknown.
AIM To identify cuprotosis-related genes that are differentially expressed in esophageal cancer and investigate their prognostic significance.
METHODS With |log fold change| > 1 and false discovery rate < 0.05 as criteria, the Wilcox test was used to evaluate the differentially expressed genes between 151 tumor tissues and 151 normal esophageal tissues. Cuproptosis-related genes were selected to be linked with prognosis using univariate Cox regression analysis. Genes were separated into high- and low- expression groups based on their cutoff value of gene expression, and the correlation between the two groups and overall survival or progression-free survival was investigated using the log-rank test. The C-index, calibration curve, and receiver operator characteristic (ROC) curve were used to assess a nomogram containing clinicopathological characteristics and cuproptosis-related genes.
RESULTS Pyruvate dehydrogenase A1 (PDHA1) was found to be highly correlated with prognosis in univariate Cox regression analysis (hazard ratio = 22.96, 95% confidence interval = 3.09-170.73; P = 0.002). According to Kaplan-Meier survival curves, low expression of PDHA1 was associated with a better prognosis (log-rank P = 0.0007). There was no significant correlation between PDHA1 expression and 22 different types of immune cells. Tumor necrosis factor superfamily member 15 (TNFSF15) (P = 3.2 × 10-6; r = 0.37), TNFRSF14 (P = 8.1 × 10-8; r = 0.42), H long terminal repeat-associating 2 (P = 6.0 × 10-8; r = 0.42) and galectin 9 (P = 3.1 × 10-6; r = 0.37) were all found to be considerably greater in the high PDHA1 expression group, according to an analysis of genes related to 47 immunological checkpoints. The low PDHA1 expression group had significantly lower levels of cluster of differentiation 44 (CD44) (P = 0.00028; R = -0.29), TNFRSF18 (P = 1.2 × 10-5; R = -0.35), programmed cell death 1 ligand 2 (P = 0.0032; R = -0.24), CD86 (P = 0.018; R = -0.19), and CD40 (P = 0.0047; R = -0.23), and the differences were statistically significant. We constructed a prognostic nomogram incorporating pathological type, tumor-node-metastasis stage, and PDHA1 expression, and the C-index, calibration curve, and ROC curve revealed that the nomogram’s predictive performance was good.
CONCLUSION Cuproptosis-related genes can be used as a prognostic predictor for esophageal cancer patients, providing novel insights into cancer treatment.
Collapse
Affiliation(s)
- Hao Xu
- General Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Qian-Cheng Du
- Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Xin-Yu Wang
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Ling Zhou
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jian Wang
- Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Ying-Ying Ma
- Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Meng-Yao Liu
- Thoracic Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Hua Yu
- General Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
8
|
Zhang DY, Ku JW, Zhao XK, Zhang HY, Song X, Wu HF, Fan ZM, Xu RH, You D, Wang R, Zhou RX, Wang LD. Increased prognostic value of clinical–reproductive model in Chinese female patients with esophageal squamous cell carcinoma. World J Gastroenterol 2022; 28:1347-1361. [PMID: 35645543 PMCID: PMC9099181 DOI: 10.3748/wjg.v28.i13.1347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/21/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In China, it has been well recognized that some female patients with esophageal squamous cell carcinoma (ESCC) have different overall survival (OS) time, even with the same tumor-node-metastasis (TNM) stage, challenging the prognostic value of the TNM system alone. An effective predictive model is needed to accurately evaluate the prognosis of female ESCC patients.
AIM To construct a novel prognostic model with clinical and reproductive data for Chinese female patients with ESCC, and to assess the incremental prognostic value of the full model compared with the clinical model and TNM stage.
METHODS A new prognostic nomogram incorporating clinical and reproductive features was constructed based on univariatie and Cox proportional hazards survival analysis from a training cohort (n = 175). The results were recognized using the internal (n = 111) and independent external (n = 85) validation cohorts. The capability of the clinical–reproductive model was evaluated by Harrell’s concordance index (C-index), Kaplan–Meier curve, time-dependent receiver operating characteristic (ROC), calibration curve and decision curve analysis. The correlations between estrogen response and immune-related pathways and some gene markers of immune cells were analyzed using the TIMER 2.0 database.
RESULTS A clinical–reproductive model including incidence area, age, tumor differentiation, lymph node metastasis (N) stage, estrogen receptor alpha (ESR1) and beta (ESR2) expression, menopausal age, and pregnancy number was constructed to predict OS in female ESCC patients. Compared to the clinical model and TNM stage, the time-dependent ROC and C-index of the clinical–reproductive model showed a good discriminative ability for predicting 1-, 3-, and 5-years OS in the primary training, internal and external validation sets. Based on the optimal cut-off value of total prognostic scores, patients were classified into high- and low-risk groups with significantly different OS. The estrogen response was significantly associated with p53 and apoptosis pathways in esophageal cancer.
CONCLUSION The clinical–reproductive prognostic nomogram has an incremental prognostic value compared with the clinical model and TNM stage in predicting OS in Chinese female ESCC patients.
Collapse
Affiliation(s)
- Dong-Yun Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Department of Pathology, Nanyang Medical College, Nanyang 473061, Henan Province, China
| | - Jian-Wei Ku
- Department of Endoscopy, The Third Affiliated Hospital, Nanyang Medical College, Nanyang 473061, Henan Province, China
| | - Xue-Ke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hai-Yan Zhang
- Department of Pathology, The First Affiliated Hospital, Nanyang Medical College, Nanyang 473061, Henan Province, China
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hong-Fang Wu
- Department of Pathology, Nanyang Medical College, Nanyang 473061, Henan Province, China
| | - Zong-Min Fan
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rui-Hua Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Duo You
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450052, Henan Province, China
| | - Ran Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ruo-Xi Zhou
- Department of Biology, University of Richmond, Richmond, VA 23173, United States
| | - Li-Dong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
9
|
Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs. Cells 2021; 10:cells10112988. [PMID: 34831211 PMCID: PMC8616429 DOI: 10.3390/cells10112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that gastrointestinal (GI) cancers are common and devastating diseases around the world. Despite the significant progress that has been made in the treatment of GI cancers, the mortality rates remain high, indicating a real need to explore the complex pathogenesis and develop more effective therapeutics for GI cancers. G protein-coupled receptors (GPCRs) are critical signaling molecules involved in various biological processes including cell growth, proliferation, and death, as well as immune responses and inflammation regulation. Substantial evidence has demonstrated crucial roles of GPCRs in the development of GI cancers, which provided an impetus for further research regarding the pathophysiological mechanisms and drug discovery of GI cancers. In this review, we mainly discuss the roles of sphingosine 1-phosphate receptors (S1PRs), angiotensin II receptors, estrogen-related GPCRs, and some other important GPCRs in the development of colorectal, gastric, and esophageal cancer, and explore the potential of GPCRs as therapeutic targets.
Collapse
|