1
|
Noh ES, Shin EH, Kong HJ, Kim YO, Ryu YW. Developing a Microsatellite Polymerase Chain Reaction System for Small Yellow Croaker ( Larimichthys polyactis) and Its Application in Parentage Assignment. BIOLOGY 2024; 13:710. [PMID: 39336137 PMCID: PMC11428518 DOI: 10.3390/biology13090710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
(1) Background: The small yellow croaker, an economically important fish in East Asia, has been subjected to population declines due to overfishing and environmental pressures. The development of effective breeding programs is considered crucial for the species, and accurate parentage assignment is deemed essential for such programs. (2) Methods: The assembled reference genome of the small yellow croaker was utilized to select highly polymorphic microsatellite markers. A multiplex PCR system was optimized for the simultaneous amplification of these markers. The system's accuracy was validated using controlled mating pairs and subsequently applied to a group mating scenario. (3) Results: The developed multiplex PCR system demonstrated high accuracy in assigning offspring to their parents in both the controlled and group mating scenarios. (4) Conclusions: The system is presented as a valuable tool for pedigree management, selective breeding, and conservation efforts for the small yellow croaker, facilitating sustainable aquaculture practices and genetic improvement.
Collapse
Affiliation(s)
- Eun-Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Eun-Ha Shin
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hee-Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Yong-Woon Ryu
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science, Jeju 63610, Republic of Korea
| |
Collapse
|
2
|
Xie QP, Zhan W, Shi JZ, Liu F, Niu BL, He X, Liu M, Wang J, Liang QQ, Xie Y, Xu P, Wang X, Lou B. Whole-genome assembly and annotation for the little yellow croaker (Larimichthys polyactis) provide insights into the evolution of hermaphroditism and gonochorism. Mol Ecol Resour 2023; 23:632-658. [PMID: 36330680 DOI: 10.1111/1755-0998.13731] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The evolutionary direction of gonochorism and hermaphroditism is an intriguing mystery to be solved. The special transient hermaphroditic stage makes the little yellow croaker (Larimichthys polyactis) an appealing model for studying hermaphrodite formation. However, the origin and evolutionary relationship between of L. polyactis and Larimichthys crocea, the most famous commercial fish species in East Asia, remain unclear. Here, we report the sequence of the L. polyactis genome, which we found is ~706 Mb long (contig N50 = 1.21 Mb and scaffold N50 = 4.52 Mb) and contains 25,233 protein-coding genes. Phylogenomic analysis suggested that L. polyactis diverged from the common ancestor, L. crocea, approximately 25.4 million years ago. Our high-quality genome assembly enabled comparative genomic analysis, which revealed several within-chromosome rearrangements and translocations, without major chromosome fission or fusion events between the two species. The dmrt1 gene was identified as the male-specific gene in L. polyactis. Transcriptome analysis showed that the expression of dmrt1 and its upstream regulatory gene (rnf183) were both sexually dimorphic. Rnf183, unlike its two paralogues rnf223 and rnf225, is only present in Larimichthys and Lates but not in other teleost species, suggesting that it originated from lineage-specific duplication or was lost in other teleosts. Phylogenetic analysis shows that the hermaphrodite stage in male L. polyactis may be explained by the sequence evolution of dmrt1. Decoding the L. polyactis genome not only provides insight into the genetic underpinnings of hermaphrodite evolution, but also provides valuable information for enhancing fish aquaculture.
Collapse
Affiliation(s)
- Qing-Ping Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Zhi Shi
- Novogene Bioinformatics Institute, Beijing, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bao-Long Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meng Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Jing Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Qi-Qi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yue Xie
- Novogene Bioinformatics Institute, Beijing, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.,Alabama Agricultural Experiment Station, Auburn, Alabama, USA.,The HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
He X, Han M, Zhan W, Liu F, Guo D, Zhang Y, Liang X, Wang Y, Lou B. Mixture effects of imidacloprid and difenconazole on enzymatic activity and gene expression in small yellow croakers (Larimichthys polyactis). CHEMOSPHERE 2022; 306:135551. [PMID: 35787886 DOI: 10.1016/j.chemosphere.2022.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Agrochemicals usually exist as mixtures in aqueous ecosystems and have harmful impacts on the natural environment. Nonetheless, the combined effects and underlying mechanisms of agrochemicals on aqueous organisms remain poorly understood. In the present study, the interactive effects of imidacloprid (IMI) and difenconazole (DIF) on the embryos of small yellow croakers (Larimichthys polyactis) were assessed using various toxicological assays, including acute toxicity, enzymatic activity, and gene expression changes. The results showed that DIF (72-h LC50 value of 0.20 mg L-1) had higher toxicity than IMI (72-h LC50 value of 12.5 mgL-1). Simultaneously, combinations of IMI and DIF exerted synergistic acute effects on the embryos of L. polyactis. In addition, the SOD, CAT, GST, and CarE activities were noticeably altered in most single and mixed exposures, relative to the untreated control. The expression of four genes (cyp19a1b, ngln2, klf2a, and socs3a) related to the immune system, endocrine system, and neurodevelopment was also surprisingly altered when the embryos of L. polyactis were subjected to individual and combined exposures relative to the untreated control. Changes in enzymatic activity and gene expression might provide early warning indices for the identification of agrochemical co-exposure. The results of this study provide valuable insights into the comprehensive toxicity of agrochemical mixtures to L. polyactis. Further studies on the long-term effects of agrochemical mixtures on marine fish should be conducted to formulate definitive conclusions concerning hazards.
Collapse
Affiliation(s)
- Xue He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dandan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xiao Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology / Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
4
|
Zhan W, Weng H, Liu F, Han M, Lou B, Wang Y. Joint toxic effects of phoxim and lambda-cyhalothrin on the small yellow croaker (Larimichthys polyactis). CHEMOSPHERE 2022; 307:136203. [PMID: 36037960 DOI: 10.1016/j.chemosphere.2022.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Although pesticides commonly exist as combinations in real-life situations of the aquatic ecosystem, the impact of the toxicity of their mixtures has remained largely unclear. In this study, we investigated the combined effects of two neurotoxic pesticides, including one organophosphate insecticide phoxim (PHO) and one pyrethroid insecticide lambda-cyhalothrin (LCY), on the embryos of the small yellow croaker (Larimichthys polyactis), and their potential pathways. LCY exhibited higher toxicity relative to PHO, with a 72-h LC50 value of 0.0074 mg a.i. L-1, while the corresponding value for PHO was 0.12 mg a.i. L-1. The mixture of PHO and LCY exerted a synergistic effect on the embryos of L. polyactis. The activities of antioxidant enzyme CAT and apoptotic enzyme caspase 3 were substantially changed in most single and combined exposure groups relative to the baseline value. Under both single and combined exposures, more significant changes were found in the mRNA expression of five genes, including the immunosuppression gene ngln2, the apoptosis gene P53, the endocrine system gene cyp19a1b, as well as neurodevelopment genes of ap and acp2, relative to the baseline value. Furthermore, the non-target metabolomic analysis demonstrated that hundreds of differential metabolites, including two bile acids (taurodeoxycholic acid and tauroursodeoxycholic acid), were significantly increased in the exposure groups. The bile acids were closely associated with the gut microbiota, and 16S rRNA sequencing results demonstrated dysfunction of the gut microbiota after exposure, especially in the combined exposure group. Our findings indicated that there might be a potential risk connected to the co-occurrence of these two pesticides in aquatic vertebrates. Consequently, future ecological risk assessments should incorporate synergistic mixtures because the current risk assessments do not consider them.
Collapse
Affiliation(s)
- Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
5
|
Liu S, He B, Li H. Water Blooms-A Potential Threat to Male Reproduction: Clues From Aquatics and Rodents. Front Endocrinol (Lausanne) 2022; 13:877292. [PMID: 35692412 PMCID: PMC9174978 DOI: 10.3389/fendo.2022.877292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Toxic cyanobacteria blooms are a potential threat to global aquatic ecosystems and human health. Microcystin-leucine-arginine (MC-LR) is the most toxic variant of microcystins (MCs), and exposure to MCs can damage the male reproductive system. Two electronic databases were searched for controlled studies of rodents and fishes published before September 2020. Effect sizes were calculated for eight main reproductive parameters, including sperm count, sperm motility, sperm morphology, serum testosterone, testis weight, serum follicle stimulating hormone (FSH), serum luteinising hormone (LH) and serum estradiol. Nine meta-analyses of individual parameters were conducted using R version 4.0.2. Fifteen studies were included in the meta-analysis. In the studies of rodents, exposure to MC-LR by intraperitoneal injection or intragastric administration yielded statistically significant effects on sperm count (standardised mean difference (SMD) = -1.7426 (95% CI: -2.2098 to -1.2754)), abnormal sperm rate (SMD = 1.6714 (95% CI: 0.9702 to 2.3726)), sper5% CI: -3.9811 to -1.7834)), testis weight (SMD = -2.8822 (95% CI: -3.9811 to -1.7834)) and serum FSH (SMD = 0.4707 (95% CI: 0.0659 to 0.8756) changes in serum testosterone (SMD = 0.5521 (95% CI: 0.1652; 0.9391)) and estradiol (SMD = 0.6398 (95% CI: 0.1896 to 1.0900)) concentrations are considered to be statistically significant. Dose-response analysis reflected the dynamic changes of male reproductive function caused by MC. Short-term exposure to MC-LR can affect the function of the male reproductive system in rodents and fish. Elevated dosage or extended exposure time may worsen the damage. Human-related research on MC-LR exposure is very necessary to protect health and the water environment.
Collapse
Affiliation(s)
| | | | - Hua Li
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Xie QP, Li BB, Wei FL, Yu M, Zhan W, Liu F, Lou B. Growth and gonadal development retardations after long-term exposure to estradiol in little yellow croaker, Larimichthys polyactis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112462. [PMID: 34217113 DOI: 10.1016/j.ecoenv.2021.112462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 05/25/2023]
Abstract
Endocrine disrupting chemicals (EDCs) including 17β-estradiol (E2) are widely distributed in the aquatic environment and are known to negatively affect the reproductive system of many animals, including fish. EDCs leading to feminization, altered sex ratio and reduced fecundity, it is possibly posing potential risks to the ecosystems. To investigate the potentially toxic effects of E2 exposure on little yellow croaker (Larimichthys polyactis, L. poliactis) who have a unique gonadal development pattern that males undergo a hermaphroditic stage. An experiment was set up where L. poliactis were maintained in tanks and exposed to E2 concentrations of 10 μg/L or no E2 exposure (the ethanol and control groups) from 30 to 90 days post-hatching (dph). After exposure, the E2 withdrawal and continual cultured to 150 and 365 dph. The morphological and histological analyses were used to compare the changes in the fish body and gonad under E2 exposure. The results showed that E2 exposure caused three major phenotypes at 30 and 60 days after treatment (dat), including ovary, ovotestis and gonadal development retardation compared with the control groups. The average ratio of these three phenotypes is 60.6%, 11.97% and 27.43%, respectively. The body length and weight of E2 exposure groups were repressed during the E2 exposure period, while it can recover after E2 withdrawal. However, the gonadal development (Gonadosomatic Index) of E2 exposure groups testis were retarded at 60 dat and doesn't recover until 365 dph. The sex determination/differentiation-related genes erα, erβI, erβII, fshβ and cyp11b2 were significantly decreased in E2-exposure male fish. This research highlights the E2 leads to feminization, disrupts testis maturation and spermatogenesis, this effect persisted into the stage of sexual maturity. Collectively, our findings provide insights into the molecular mechanisms underlying E2 disturbance of a marine economic fish reproduction.
Collapse
Affiliation(s)
- Qing-Ping Xie
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Bing-Bing Li
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Fu-Liang Wei
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Min Yu
- School of Fishery, Zhejiang Ocean University, Zhoushan 316021, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|