1
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
2
|
Yang S, Tang X, Wang L, Ni C, Wu Y, Zhou L, Zeng Y, Zhao C, Wu A, Wang Q, Xu X, Wang Y, Chen R, Zhang X, Zou L, Huang X, Wu J. Targeting TLR2/Rac1/cdc42/JNK Pathway to Reveal That Ruxolitinib Promotes Thrombocytopoiesis. Int J Mol Sci 2022; 23:ijms232416137. [PMID: 36555781 PMCID: PMC9787584 DOI: 10.3390/ijms232416137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Thrombocytopenia has long been considered an important complication of chemotherapy and radiotherapy, which severely limits the effectiveness of cancer treatment and the overall survival of patients. However, clinical treatment options are extremely limited so far. Ruxolitinib is a potential candidate. METHODS The impact of ruxolitinib on the differentiation and maturation of K562 and Meg-01 cells megakaryocytes (MKs) was examined by flow cytometry, Giemsa and Phalloidin staining. A mouse model of radiation-injured thrombocytopenia (RIT) was employed to evaluate the action of ruxolitinib on thrombocytopoiesis. Network pharmacology, molecular docking, drug affinity responsive target stability assay (DARTS), RNA sequencing, protein blotting and immunofluorescence analysis were applied to explore the targets and mechanisms of action of ruxolitinib. RESULTS Ruxolitinib can stimulate MK differentiation and maturation in a dose-dependent manner and accelerates recovery of MKs and thrombocytopoiesis in RIT mice. Biological targeting analysis showed that ruxolitinib binds directly to Toll Like Receptor 2 (TLR2) to activate Rac1/cdc42/JNK, and this action was shown to be blocked by C29, a specific inhibitor of TLR2. CONCLUSIONS Ruxolitinib was first identified to facilitate MK differentiation and thrombocytopoiesis, which may alleviate RIT. The potential mechanism of ruxolitinib was to promote MK differentiation via activating the Rac1/cdc42/JNK pathway through binding to TLR2.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chengyang Ni
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueying Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chunling Zhao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiaozhi Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiyan Xu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lile Zou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Correspondence: (X.H.); (J.W.); Tel.: +86-13808285526 (X.H.); +86-13982416641 (J.W.)
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Correspondence: (X.H.); (J.W.); Tel.: +86-13808285526 (X.H.); +86-13982416641 (J.W.)
| |
Collapse
|
3
|
The Potential Role of PPARs in the Fetal Origins of Adult Disease. Cells 2022; 11:cells11213474. [PMID: 36359869 PMCID: PMC9653757 DOI: 10.3390/cells11213474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The fetal origins of adult disease (FOAD) hypothesis holds that events during early development have a profound impact on one’s risk for the development of future adult disease. Studies from humans and animals have demonstrated that many diseases can begin in childhood and are caused by a variety of early life traumas, including maternal malnutrition, maternal disease conditions, lifestyle changes, exposure to toxins/chemicals, improper medication during pregnancy, and so on. Recently, the roles of Peroxisome proliferator-activated receptors (PPARs) in FOAD have been increasingly appreciated due to their wide variety of biological actions. PPARs are members of the nuclear hormone receptor subfamily, consisting of three distinct subtypes: PPARα, β/δ, and γ, highly expressed in the reproductive tissues. By controlling the maturation of the oocyte, ovulation, implantation of the embryo, development of the placenta, and male fertility, the PPARs play a crucial role in the transition from embryo to fetus in developing mammals. Exposure to adverse events in early life exerts a profound influence on the methylation pattern of PPARs in offspring organs, which can affect development and health throughout the life course, and even across generations. In this review, we summarize the latest research on PPARs in the area of FOAD, highlight the important role of PPARs in FOAD, and provide a potential strategy for early prevention of FOAD.
Collapse
|
4
|
Rasmussen L, Knorr S, Antoniussen CS, Bruun JM, Ovesen PG, Fuglsang J, Kampmann U. The Impact of Lifestyle, Diet and Physical Activity on Epigenetic Changes in the Offspring-A Systematic Review. Nutrients 2021; 13:nu13082821. [PMID: 34444981 PMCID: PMC8398155 DOI: 10.3390/nu13082821] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Aims: This systematic review examines the association between maternal lifestyle, diet and physical activity, and epigenetic changes in the offspring. Methods: A literature search was conducted using multiple science databases: PubMed, Embase and Cochrane Library, on 10 March 2021. RCT and Cohort studies in English or Scandinavian languages were included. Exposure variables included diet, lifestyle, meal patterns or physical activity. Studies using dietary supplements as exposure variables were excluded. Outcome variables included were DNA methylation, microRNA or histone changes in placenta, cord blood or offspring. Two independent authors screened, read and extracted data from the included papers. The Cochrane risk-of-bias tool for randomized trials (RoB2) and The Critical Appraisal Skills Program (CASP) Cohort Study Checklist were used to assess risk of bias in the included studies. A qualitative approach was employed due to heterogeneity of exposures and results of the studies. Results: 16 studies and 3617 participants were included in the final analysis. The exposure variables included physical activity, carbohydrate, low glycemic index diet, added sugar, fat, Mediterranean diet and pro-inflammatory diet. The outcome variables identified were differences in DNA methylation and microRNA. Most studies described epigenetic changes in either placenta or cord blood. Genes reported to be methylated were GR, HSD2, IGF-2, PLAG1, MEG-3, H19 and RXRA. However, not all studies found epigenetic changes strong enough to pass multiple testing, and the study quality varied. Conclusion: Despite the variable quality of the included studies, the results in this review suggest that there may be an association between the mother’s lifestyle, diet and level of physical activity during pregnancy and epigenetic changes in the offspring.
Collapse
Affiliation(s)
- Louise Rasmussen
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle-Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; (L.R.); (P.G.O.); (J.F.)
| | - Sine Knorr
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark; (S.K.); (J.M.B.)
| | | | - Jens Meldgaard Bruun
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark; (S.K.); (J.M.B.)
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevar 82, 8200 Aarhus N, Denmark
| | - Per Glud Ovesen
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle-Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; (L.R.); (P.G.O.); (J.F.)
| | - Jens Fuglsang
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle-Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; (L.R.); (P.G.O.); (J.F.)
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 8200 Aarhus N, Denmark; (S.K.); (J.M.B.)
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevar 82, 8200 Aarhus N, Denmark
- Correspondence: ; Tel.: +45-22370857
| |
Collapse
|