1
|
Pilz J, Gloddek N, Lindheimer F, Lindner MJ, Puhr-Westerheide D, Ümütlü M, Cyran C, Seidensticker M, Lindner R, Kraetzl M, Renner S, Merkus D, Teupser D, Bartenstein P, Ziegler SI, Wolf E, Kemter E. Functional maturation and longitudinal imaging of intraportal neonatal porcine islet grafts in genetically diabetic pigs. Am J Transplant 2024; 24:1395-1405. [PMID: 38432328 DOI: 10.1016/j.ajt.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Allogeneic intraportal islet transplantation (ITx) has become an established treatment for patients with poorly controlled type 1 diabetes. However, the loss of viable beta-cell mass after transplantation remains a major challenge. Therefore, noninvasive imaging methods for long-term monitoring of the transplant fate are required. In this study, [68Ga]Ga-DOTA-exendin-4 positron emission tomography/computed tomography (PET/CT) was used for repeated monitoring of allogeneic neonatal porcine islets (NPI) after intraportal transplantation into immunosuppressed genetically diabetic pigs. NPI transplantation (3320-15,000 islet equivalents per kg body weight) led to a reduced need for exogenous insulin therapy and finally normalization of blood glucose levels in 3 out of 4 animals after 5 to 10 weeks. Longitudinal PET/CT measurements revealed a significant increase in standard uptake values in graft-bearing livers. Histologic analysis confirmed the presence of well-engrafted, mature islet clusters in the transplanted livers. Our study presents a novel large animal model for allogeneic intraportal ITx. A relatively small dose of NPIs was sufficient to normalize blood glucose levels in a clinically relevant diabetic pig model. [68Ga]Ga-DOTA-exendin-4 PET/CT proved to be efficacious for longitudinal monitoring of islet transplants. Thus, it could play a crucial role in optimizing ITx as a curative therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Johanna Pilz
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nicol Gloddek
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Felix Lindheimer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Magdalena J Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Muzzafer Ümütlü
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Clemens Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Richard Lindner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Kraetzl
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daphne Merkus
- Walter Brendel Center for Experimental Medicine (WBex), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Teupser
- Department of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
2
|
Hájek M, Flögel U, S Tavares AA, Nichelli L, Kennerley A, Kahn T, Futterer JJ, Firsiori A, Grüll H, Saha N, Couñago F, Aydogan DB, Caligiuri ME, Faber C, Bell LC, Figueiredo P, Vilanova JC, Santini F, Mekle R, Waiczies S. MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention. MAGMA (NEW YORK, N.Y.) 2024; 37:323-328. [PMID: 38865057 PMCID: PMC11316697 DOI: 10.1007/s10334-024-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Milan Hájek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriana A S Tavares
- Centre for Cardiovascular Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Lucia Nichelli
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Aneurin Kennerley
- Department of Sports and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Biology, University of York, York, UK
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Jurgen J Futterer
- Minimally Invasive Image-Guided Intervention Center (MAGIC), Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Aikaterini Firsiori
- Unit of Diagnostic and Interventional Neuroradiology, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Nandita Saha
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010, Madrid, Spain
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Università Degli Studi "Magna Graecia", Catanzaro, Italy
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Münster, Germany
| | - Laura C Bell
- Early Clinical Development, Genentech Inc., South San Francisco, USA
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, ISR-Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI) Girona, University of Girona, 17004, Girona, Spain
| | - Francesco Santini
- Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the MDC, Berlin, Germany.
| |
Collapse
|
3
|
Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Transl Med 2024; 22:435. [PMID: 38720379 PMCID: PMC11077715 DOI: 10.1186/s12967-024-05226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Tinklepaugh J, Mamrak NE. Imaging in Type 1 Diabetes, Current Perspectives and Directions. Mol Imaging Biol 2023; 25:1142-1149. [PMID: 37934378 DOI: 10.1007/s11307-023-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the autoimmune-mediated attack of insulin-producing beta cells in the pancreas, leading to reliance on exogenous insulin to control a patient's blood glucose levels. As progress is being made in understanding the pathophysiology of the disease and how to better develop therapies to treat it, there is an increasing need for monitoring technologies to quantify beta cell mass and function throughout T1D progression and beta cell replacement therapy. Molecular imaging techniques offer a possible solution through both radiologic and non-radiologic means including positron emission tomography, magnetic resonance imaging, electron paramagnetic resonance imaging, and spatial omics. This commentary piece outlines the role of molecular imaging in T1D research and highlights the need for further applications of such methodologies in T1D.
Collapse
Affiliation(s)
- Jay Tinklepaugh
- Research Department, JDRF, 200 Vesey Street, New York, NY, USA
| | | |
Collapse
|
5
|
Botagarova A, Murakami T, Fujimoto H, Fauzi M, Kiyobayashi S, Otani D, Fujimoto N, Inagaki N. Noninvasive quantitative evaluation of viable islet grafts using 111 In-exendin-4 SPECT/CT. FASEB J 2023; 37:e22859. [PMID: 36906290 DOI: 10.1096/fj.202201787rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/13/2023]
Abstract
Islet transplantation (IT) is an effective β-cell replacement therapy for patients with type 1 diabetes; however, the lack of methods to detect islet grafts and evaluate their β-cell mass (BCM) has limited the further optimization of IT protocols. Therefore, the development of noninvasive β-cell imaging is required. In this study, we investigated the utility of the 111 Indium-labeled exendin-4 probe {[Lys12(111In-BnDTPA-Ahx)] exendin-4} (111 In exendin-4) to evaluate islet graft BCM after intraportal IT. The probe was cultured with various numbers of isolated islets. Streptozotocin-induced diabetic mice were intraportally transplanted with 150 or 400 syngeneic islets. After a 6-week observation following IT, the ex-vivo liver graft uptake of 111 In-exendin-4 was compared with the liver insulin content. In addition, the in-vivo liver graft uptake of 111 In exendin-4 using SPECT/CT was compared with that of liver graft BCM measured by a histological method. As a result, probe accumulation was significantly correlated with islet numbers. The ex-vivo liver graft uptake in the 400-islet-transplanted group was significantly higher than that in the control and the 150-islet-transplanted groups, consistent with glycemic control and liver insulin content. In conclusion, in-vivo SPECT/CT displayed liver islet grafts, and uptakes were corroborated by histological liver BCM. 111 In-exendin-4 SPECT/CT can be used to visualize and evaluate liver islet grafts noninvasively after intraportal IT.
Collapse
Affiliation(s)
- Ainur Botagarova
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency for Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Muhammad Fauzi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sakura Kiyobayashi
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Otani
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nanae Fujimoto
- Department of Regeneration Science and Engineering Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Osaka, Japan
| |
Collapse
|
6
|
Arifin DR, Bulte JWM. In Vivo Imaging of Naked and Microencapsulated Islet Cell Transplantation. Methods Mol Biol 2023; 2592:75-88. [PMID: 36507986 PMCID: PMC10437091 DOI: 10.1007/978-1-0716-2807-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe step-by-step methods to label human pancreatic islet cells and murine insulinoma cells and their subsequent transplantation into type I diabetic mouse models with a focus on in vivo imaging using clinically applicable scanners. We also cover islets that are microencapsulated within alginate hydrogels loaded with imaging agents. By following these methods, it is possible to image cell grafts using T1-weighted and T2/T2*-weighted 1H magnetic resonance imaging (MRI), 19F MRI, computed tomography, ultrasound imaging, and bioluminescence imaging in vivo. Considering a myriad of factors that may affect the outcome of proper in vivo detection, we discuss potential issues that may be encountered during and after the process of labeling. The ultimate goal is to use these in vivo imaging approaches to determine and optimize naked and encapsulated islet cell survival, therapeutic function, and engraftment procedures.
Collapse
Affiliation(s)
- Dian R Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Immunoregulatory Sertoli Cell Allografts Engineered to Express Human Insulin Survive Humoral-Mediated Rejection. Int J Mol Sci 2022; 23:ijms232415894. [PMID: 36555540 PMCID: PMC9780793 DOI: 10.3390/ijms232415894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
An effective treatment and possible cure for type 1 diabetes is transplantation of pancreatic islets. Unfortunately, transplanted islets are rejected by the immune system with humoral-mediated responses being an important part of rejection. Sertoli cells (SC), an immune regulatory cell shown to survive as allografts long-term without immunosuppressants, have the potential to be used as a cell-based gene therapy vehicle to deliver endogenous insulin-a possible alternative to islets. Previously, we transduced a mouse SC line to produce human insulin. After transplantation into diabetic mice, these cells consistently produced low levels of insulin with graft survival of 75% at 50 days post-transplantation. The object of this study was to assess humoral immune regulation by these engineered SC. Both nontransduced and transduced SC survived exposure to human serum with complement in vitro. Analysis of allografts in vivo at 20 and 50 days post-transplantation revealed that despite IgG antibody detection, complement factor deposition was low and grafts survived through 50 days post-transplantation. Furthermore, the transduced SC secreted elevated levels of the complement inhibitor C1q binding protein. Overall, this suggests SC genetically engineered to express insulin maintain their ability to prevent complement-mediated killing. Since inhibiting complement-mediated rejection is important for graft survival, further studies of how SC modifies the immune response could be utilized to advance the use of genetically engineered SC or to prolong islet allograft survival to improve the treatment of diabetes.
Collapse
|
8
|
Sordi V, Monaco L, Piemonti L. Cell Therapy for Type 1 Diabetes: From Islet Transplantation to Stem Cells. Horm Res Paediatr 2022; 96:658-669. [PMID: 36041412 DOI: 10.1159/000526618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
The field of cell therapy of type 1 diabetes is a particularly interesting example in the scenario of regenerative medicine. In fact, β-cell replacement has its roots in the experience of islet transplantation, which began 40 years ago and is currently a rapidly accelerating field, with several ongoing clinical trials using β cells derived from stem cells. Type 1 diabetes is particularly suitable for cell therapy as it is a disease due to the deficiency of only one cell type, the insulin-producing β cell, and this endocrine cell does not need to be positioned inside the pancreas to perform its function. On the other hand, the presence of a double immunological barrier, the allogeneic one and the autoimmune one, makes the protection of β cells from rejection a major challenge. Until today, islet transplantation has taught us a lot, pioneering immunosuppressive therapies, graft encapsulation, tissue engineering, and test of different implant sites and has stimulated a great variety of studies on β-cell function. This review starts from islet transplantation, presenting its current indications and the latest published trials, to arrive at the prospects of stem cell therapy, presenting the latest innovations in the field.
Collapse
Affiliation(s)
- Valeria Sordi
- Diabetes Research Institute, San Raffaele Hospital, Milan, Italy,
| | - Laura Monaco
- Diabetes Research Institute, San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
9
|
Establishment of a Long-Term Survival Swine Model for the Observation of Transplanted Islets: a Preliminary Step in an Allogeneic Transplant Experiment. Transplant Proc 2022; 54:507-512. [PMID: 35065829 DOI: 10.1016/j.transproceed.2021.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
|
10
|
Kemter E, Citro A, Wolf-van Buerck L, Qiu Y, Böttcher A, Policardi M, Pellegrini S, Valla L, Alunni-Fabbroni M, Kobolák J, Kessler B, Kurome M, Zakhartchenko V, Dinnyes A, Cyran CC, Lickert H, Piemonti L, Seissler J, Wolf E. Transgenic pigs expressing near infrared fluorescent protein-A novel tool for noninvasive imaging of islet xenotransplants. Xenotransplantation 2021; 29:e12719. [PMID: 34935207 DOI: 10.1111/xen.12719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Islet xenotransplantation is a promising concept for beta-cell replacement therapy. Reporter genes for noninvasive monitoring of islet engraftment, graft mass changes, long-term survival, and graft failure support the optimization of transplantation strategies. Near-infrared fluorescent protein (iRFP) is ideal for fluorescence imaging (FI) in tissue, but also for multispectral optoacoustic tomography (MSOT) with an even higher imaging depth. Therefore, we generated reporter pigs ubiquitously expressing iRFP. METHODS CAG-iRPF720 transgenic reporter pigs were generated by somatic cell nuclear transfer from FACS-selected stable transfected donor cells. Neonatal pig islets (NPIs) were transplanted into streptozotocin-diabetic immunodeficient NOD-scid IL2Rgnull (NSG) mice. FI and MSOT were performed to visualize different numbers of NPIs and to evaluate associations between signal intensity and glycemia. MSOT was also tested in a large animal model. RESULTS CAG-iRFP transgenic NPIs were functionally equivalent with wild-type NPIs. Four weeks after transplantation under the kidney capsule, FI revealed a twofold higher signal for 4000-NPI compared to 1000-NPI grafts. Ten weeks after transplantation, the fluorescence intensity of the 4000-NPI graft was inversely correlated with glycemia. After intramuscular transplantation into diabetic NSG mice, MSOT revealed clear dose-dependent signals for grafts of 750, 1500, and 3000 NPIs. Dose-dependent MSOT signals were also revealed in a pig model, with stronger signals after subcutaneous (depth ∼6 mm) than after submuscular (depth ∼15 mm) placement of the NPIs. CONCLUSIONS Islets from CAG-iRFP transgenic pigs are fully functional and accessible to long-term monitoring by state-of-the-art imaging modalities. The novel reporter pigs will support the development and preclinical testing of novel matrices and engraftment strategies for porcine xeno-islets.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lelia Wolf-van Buerck
- Diabetes Center, Medical Clinic and Policlinic IV, University Hospital, LMU Munich, Munich, Germany
| | - Yi Qiu
- iThera Medical, Munich, Germany
| | - Anika Böttcher
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Policardi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Libera Valla
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,MWM Biomodels GmbH, Tiefenbach, Germany
| | | | | | - Barbara Kessler
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | | | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Jochen Seissler
- Diabetes Center, Medical Clinic and Policlinic IV, University Hospital, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Department of Veterinary Sciences and Gene Center, Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
11
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|