1
|
Al-kuraishy HM, Sulaiman GM, Mohammed HA, Abu-Alghayth MH, Albukhaty S, Jabir MS, Albuhadily AK, Al-Gareeb AI, Klionsky DJ, Abomughaid MM. The role of autophagy in Graves disease: knowns and unknowns. Front Cell Dev Biol 2025; 12:1480950. [PMID: 39834383 PMCID: PMC11743935 DOI: 10.3389/fcell.2024.1480950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Graves disease (GD), an autoimmune disease affects the thyroid gland, results in hyperthyroidisms and goiter. The main cause of GD is not clearly defined; however, stimulating autoantibodies for thyroid stimulating hormone receptor (TSHR) known as thyroid-stimulating immunoglobulins (TSIs) are the primary proposed mechanism. The TSI activation of TSHRs of thyroid gland results in excessive release of thyroid hormones with the subsequent development of hyperthyroidism and goiter. The cellular process of macroautophagy/autophagy is implicated in the pathogenesis of GD and other thyroid diseases. Autophagy plays a critical role in many thyroid diseases and in different stages of the same disease through modulation of immunity and the inflammatory response. In addition, autophagy is also implicated in the pathogenesis of thyroid-associated ophthalmopathy (TAO). However, the exact role of autophagy in GD is not well explained. Therefore, this review discusses how autophagy is intricately involved in the pathogenesis of GD regarding its protective and harmful effects.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Salim Albukhaty
- Department of Laboratory Techniques, Al-Manara College for Medical Sciences, Maysan, Iraq
| | - Majid S. Jabir
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir Ibn Hayyan Medical University, Najaf, Iraq
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
2
|
Ma C, Li H, Lu S, Li X. Thyroid-associated ophthalmopathy and ferroptosis: a review of pathological mechanisms and therapeutic strategies. Front Immunol 2024; 15:1475923. [PMID: 39712031 PMCID: PMC11659143 DOI: 10.3389/fimmu.2024.1475923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is an inflammatory orbital disease associated with autoimmune thyroid disorders. Owing to the ambiguous nature of the pathogenesis, contemporary pharmacological treatment strategies predominantly involve the use of glucocorticoids and immunosuppressants. However, the adverse effects associated with these agents in clinical practice necessitate further investigation into the disease's pathogenesis and the identification of novel therapeutic targets and pharmacological interventions. Recent studies suggest that ferroptosis, a novel form of regulated cell death, may play a role in TAO pathogenesis. This review aims to explore the involvement of ferroptosis in TAO and evaluate its potential as a therapeutic target. Key topics include the epidemiology, clinical manifestations, and pathophysiology of TAO, along with the molecular mechanisms of ferroptosis. Evidence supporting ferroptosis in TAO and the therapeutic implications of targeting this pathway are also discussed, alongside challenges and future directions in this emerging research area.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xian Li
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Wang Y, Gao S, Cao F, Yang H, Lei F, Hou S. Ocular immune-related diseases: molecular mechanisms and therapy. MedComm (Beijing) 2024; 5:e70021. [PMID: 39611043 PMCID: PMC11604294 DOI: 10.1002/mco2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Ocular immune-related diseases, represent a spectrum of conditions driven by immune system dysregulation, include but not limit to uveitis, diabetic retinopathy, age-related macular degeneration, Graves' ophthalmopathy, etc. The molecular and cellular mechanisms underlying these diseases are typically dysfunctioned immune responses targeting ocular tissues, resulting in inflammation and tissue damage. Recent advances have further elucidated the pivotal role of different immune responses in the development, progression, as well as management of various ocular immune diseases. However, there is currently a relative lack of connection between the cellular mechanisms and treatments of several immune-related ocular diseases. In this review, we discuss recent findings related to the immunopathogenesis of above-mentioned diseases. In particular, we summarize the different types of immune cells, inflammatory mediators, and associated signaling pathways that are involved in the pathophysiology of above-mentioned ophthalmopathies. Furthermore, we also discuss the future directions of utilizing anti-inflammatory regime in the management of these diseases. This will facilitate a better understanding of the pathogenesis of immune-related ocular diseases and provide new insights for future treatment approaches.
Collapse
Affiliation(s)
- Yakun Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shangze Gao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fan Cao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Hui Yang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fengyang Lei
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shengping Hou
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Ma Q, Hai Y, Shen J. Signatures of Six Autophagy-Related Genes as Diagnostic Markers of Thyroid-Associated Ophthalmopathy and Their Correlation With Immune Infiltration. Immun Inflamm Dis 2024; 12:e70093. [PMID: 39660984 PMCID: PMC11633049 DOI: 10.1002/iid3.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is one of the most complex autoimmune diseases in endocrinology areas. Autophagy-related genes may be involved in the pathophysiology of TAO. This study aims to reveal key genes associated with autophagy in the pathogenesis and the potential diagnostic markers for TAO. METHODS We obtained autophagy-related differential genes (AR-DEGs) and their expression in TAO patients and controls. Gene ontology analysis (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to perform the enrichment analysis of AR-DEGs. LASSO regression, support vector machine recursive feature elimination, and random forest were performed to screen for disease signature genes (DSGs), which were further validated in another independent validation dataset. We used the receiver operating characteristic for the evaluation of the diagnostic efficacy of DSGs and also established a nomogram. The relative proportion of immune infiltration was calculated using the CIBERSORT algorithm, and the relationship between the identified gene markers and the level of infiltrating immune cells was explored. RESULTS We identified 24 AR-DEGs, which were primarily enriched in cellular catabolic regulation, autophagosome membrane, and ubiquitin protein ligase binding in GO analysis, while KEGG analysis highlighted autophagy as the main enriched pathway. Six DSGs were identified by three algorithms. They were validated in another independent validation dataset. The combined six-gene model also showed good diagnostic efficacy (AUC = 0.948). We further plotted the nomogram with better diagnostic efficacy. Immuno-infiltration analysis and correlation analysis demonstrated that six DSGs were significantly correlated with the infiltrating immune cells. CONCLUSIONS We identified several biological processes and pathways for the enrichment of AR-DEGs. Six DSGs were identified, which showed great potential to become critical molecules in the diagnosis of TAO, and these DSGs showed a correlation with infiltrating immune cells.
Collapse
Affiliation(s)
- Qintao Ma
- Department of Endocrinology and MetabolismShunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Yuanping Hai
- Department of Endocrinology and MetabolismShunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Jie Shen
- Department of Endocrinology and MetabolismShunde Hospital, Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| |
Collapse
|
5
|
Park SH, Choi SH, Park HY, Ko J, Yoon JS. Role of Lysyl Oxidase-Like Protein 3 in the Pathogenesis of Graves' Orbitopathy in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39546293 DOI: 10.1167/iovs.65.13.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Purpose The lysyl oxidase (LOX) family has been implicated in the pathogenesis of diseases caused by inflammation and fibrosis. Therefore, we aimed to examine the role of lysyl oxidase-like protein 3 (LOXL3) in Graves' orbitopathy (GO) pathogenesis and its potential as a treatment target. Methods Quantitative real-time polymerase chain reaction compared the transcript levels of the five LOX family subtypes in orbital tissue explants obtained from patients with GO (n = 18) and healthy controls (n = 15). The effects of LOXL3 inhibition on interleukin (IL)-1β-induced proinflammatory cytokines, transforming growth factor (TGF)-β-induced profibrotic proteins, intracellular signaling molecules, and adipogenic markers were evaluated using Western blotting. Adipogenic differentiation was identified using Oil Red O staining. Results LOX and LOXL3 transcript levels were high in GO tissues. Stimulation with IL-1β, TGF-β, and insulin-like growth factor-1 significantly increased LOXL3 messenger RNA expression in GO fibroblasts. Furthermore, silencing LOXL3 attenuated the IL-1β-induced production of proinflammatory cytokines (IL-6, IL-8, and intercellular adhesion molecule-1) and TGF-β-induced production of profibrotic proteins (fibronectin, collagen 1α, and alpha-smooth muscle actin). It also reduced the IL-1β or TGF-β-induced expression of phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells, protein kinase B, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Additionally, LOXL3 silencing suppressed adipocyte differentiation and the expression of adipogenic transcription factors (leptin, AP-2, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer-binding protein). Conclusions LOXL3 is crucial in GO pathogenesis. LOXL3 inhibition reduced inflammatory cytokine production, fibrotic protein expression, and fibroblast differentiation into adipocytes. This study highlights LOXL3 as a potential therapeutic target for GO.
Collapse
Affiliation(s)
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Shu X, Zeng C, Zhu Y, Chen Y, Huang X, Wei R. Screening of pathologically significant diagnostic biomarkers in tears of thyroid eye disease based on bioinformatic analysis and machine learning. Front Cell Dev Biol 2024; 12:1486170. [PMID: 39544368 PMCID: PMC11561714 DOI: 10.3389/fcell.2024.1486170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Background Lacrimal gland enlargement is a common pathological change in patients with thyroid eye disease (TED). Tear fluid has emerged as a new source of diagnostic biomarkers, but tear-based diagnostic biomarkers for TED with high efficacy are still lacking. Objective We aim to investigate genes associated with TED-associated lacrimal gland lesions. Additionally, we seek to identify potential biomarkers for diagnosing TED in tear fluid. Methods We obtained two expression profiling datasets related to TED lacrimal gland samples from the Gene Expression Omnibus (GEO). Subsequently, we combined the two separate datasets and conducted differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) on the obtained integrated dataset. The genes were employed for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The genes were intersected with the secretory proteins profile to get the potential proteins in the tear fluid. Machine learning techniques were then employed to identify optimal biomarkers and develop a diagnostic nomogram for predicting TED. Finally, gene set enrichment analysis (GSEA) and immune infiltration analysis were conducted on screened hub genes to further elucidate their potential mechanisms in TED. Results In our analysis of the integrated TED dataset, we identified 2,918 key module genes and 157 differentially expressed genes and finally obtained 84 lacrimal-associated key genes. Enrichment analysis disclosed that these 84 genes primarily pertain to endoplasmic reticulum organization. After intersecting with the secretory proteins, 13 lacrimal gland-associated secretory protein genes (LaSGs) were identified. The results from machine learning indicated the substantial diagnostic value of dyslexia associated gene (KIAA0319) and peroxiredoxin4 (PRDX4) in TED-associated lacrimal gland lesions. The two hub genes were chosen as candidate biomarkers in tear fluid and employed to establish a diagnostic nomogram. Furthermore, single-gene GSEA results and immune cell infiltration analysis unveiled immune dysregulation in the lacrimal gland of TED, with KIAA0319 and PRDX4 showing significant associations with infiltrating immune cells. Conclusions We uncovered the distinct pathophysiology of TED-associated lacrimal gland enlargement compared to TED-associated orbital adipose tissue enlargement. We have demonstrated the endoplasmic reticulum-related pathways involved in TED-associated lacrimal gland lesions and established a diagnostic nomogram for TED utilizing KIAA0319 and PRDX4 through integrated bioinformatics analysis. This contribution offers novel insights for non-invasive, prospective diagnostic approaches in the context of TED.
Collapse
Affiliation(s)
| | | | | | - Yuqing Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Xiao Huang
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Jin K, Yao Q, Sun B. The phenotypic characteristics of polymorphonuclear neutrophils and their correlation with B cell and CD4+T cell subsets in thyroid-associated ophthalmopathy. Front Immunol 2024; 15:1413849. [PMID: 39234250 PMCID: PMC11371595 DOI: 10.3389/fimmu.2024.1413849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Thyroid-associated ophthalmopathy (TAO) is considered to be an organ-specific autoimmune disease. Polymorphonuclear neutrophils (PMN) have been implicated in the pathogenesis of TAO. However, little is known about the role of PMN in the development of TAO, much less the relationship between PMN with B cells and CD4+T cells in TAO. Objective This study aims to investigate the phenotypic characteristics of PMN and the relationship between PMN with CD4+T cell and B cell subsets in the pathogenesis of TAO. Methods Blood routine information was collected from 135 TAO patients, 95 Grave's disease without TAO (GD) patients, and 116 normal controls (NC), while surface marker expression of PMN and the level of CD4+T cell and B cell subsets in peripheral blood from 40 TAO patients, 17 GD patients, and 45 NC was assessed by flow cytometry. Result The level of PMN, CD62L+PMN, CD54+PMN, CD4+T cells, and Th17 cells displayed an increase in TAO patients than NC, while Treg cells were lower in the TAO group compared to NC. There was no statistical difference in Th1 and plasma cells among the groups. PMN were positively correlated with Th17 cells, but not the Th1, Treg, and plasma cells. Conclusion In the present study, we found that the percentage of PMN and PMN subset cells was significantly higher in TAO than in NC, and PMN were positively correlated with Th17 cells. It suggests that PMN may be involved in the immunopathogenesis of TAO and modulate the Th17 cell response during this process.
Collapse
Affiliation(s)
- Ke Jin
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qian Yao
- Department of Ophthalmology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Bin Sun
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Wei L, Huang Q, Tu Y, Song S, Zhang X, Yu B, Liu Y, Li Z, Huang Q, Chen L, Liu B, Xu S, Li T, Liu X, Hu X, Liu W, Chi ZL, Wu W. Plasma exosomes from patients with active thyroid-associated orbitopathy induce inflammation and fibrosis in orbital fibroblasts. J Transl Med 2024; 22:546. [PMID: 38849907 PMCID: PMC11157872 DOI: 10.1186/s12967-024-05263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The pathogenesis of thyroid-associated orbitopathy (TAO) remains incompletely understand. The interaction between immunocytes and orbital fibroblasts (OFs) play a critical role in orbital inflammatory and fibrosis. Accumulating reports indicate that a significant portion of plasma exosomes (Pla-Exos) are derived from immune cells; however, their impact upon OFs function is unclear. METHODS OFs were primary cultured from inactive TAO patients. Exosomes isolated from plasma samples of patients with active TAO and healthy controls (HCs) were utilized for functional and RNA cargo analysis. Functional analysis in thymocyte differentiation antigen-1+ (Thy-1+) OFs measured expression of inflammatory and fibrotic markers (mRNAs and proteins) and cell activity in response to Pla-Exos. RNA cargo analysis was performed by RNA sequencing and RT-qPCR. Thy-1+ OFs were transfected with miR-144-3p mimics/inhibitors to evaluate its regulation of inflammation, fibrosis, and proliferation. RESULTS Pla-Exos derived from active TAO patients (Pla-ExosTAO-A) induced stronger production of inflammatory cytokines and hyaluronic acid (HA) in Thy-1+ OFs while inhibiting their proliferation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and single sample gene set enrichment analysis (ssGSEA) suggested that the difference in mRNA expression levels between Pla-ExosTAO-A and Pla-ExosHC was closely related to immune cells. Differential expression analysis revealed that 62 upregulated and 45 downregulated miRNAs in Pla-ExosTAO-A, with the elevation of miR-144-3p in both Pla-Exos and PBMCs in active TAO group. KEGG analysis revealed that the target genes of differentially expressed miRNA and miR-144-3p enriched in immune-related signaling pathways. Overexpression of the miR-144-3p mimic significantly upregulated the secretion of inflammatory cytokines and HA in Thy-1+ OFs while inhibiting their proliferation. CONCLUSION Pla-Exos derived from patients with active TAO were immune-active, which may be a long-term stimulus casual for inflammatory and fibrotic progression of TAO. Our finding suggests that Pla-Exos could be used as biomarkers or treatment targets in TAO patients.
Collapse
Affiliation(s)
- Li Wei
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinying Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunhai Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shihan Song
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaobo Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yufen Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziwei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shenglan Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tong Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiyuan Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaozhou Hu
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weijie Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain health), Wenzhou, 32500, China.
| |
Collapse
|
9
|
Shu X, Shao Y, Chen Y, Zeng C, Huang X, Wei R. Immune checkpoints: new insights into the pathogenesis of thyroid eye disease. Front Immunol 2024; 15:1392956. [PMID: 38817600 PMCID: PMC11137266 DOI: 10.3389/fimmu.2024.1392956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Thyroid eye disease (TED) is a disfiguring autoimmune disease characterized by changes in the orbital tissues and is caused by abnormal thyroid function or thyroid-related antibodies. It is the ocular manifestation of Graves' disease. The expression of thyroid-stimulating hormone receptor (TSHR) and the insulin-like growth factor-1 receptor (IGF-1 R) on the cell membrane of orbital fibroblasts (OFs) is responsible for TED pathology. Excessive inflammation is caused when these receptors in the orbit are stimulated by autoantibodies. CD34+ fibrocytes, found in the peripheral blood and orbital tissues of patients with TED, express immune checkpoints (ICs) like MHC II, B7, and PD-L1, indicating their potential role in presenting antigens and regulating the immune response in TED pathogenesis. Immune checkpoint inhibitors (ICIs) have significantly transformed cancer treatment. However, it can also lead to the occurrence of TED in some instances, suggesting the abnormality of ICs in TED. This review will examine the overall pathogenic mechanism linked to the immune cells of TED and then discuss the latest research findings on the immunomodulatory role of ICs in the development and pathogenesis of TED. This will offer fresh perspectives on the study of pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| |
Collapse
|
10
|
Eckstein A, Welkoborsky HJ. [Interdisciplinary Management of Orbital Diseases]. Laryngorhinootologie 2024; 103:S43-S99. [PMID: 38697143 DOI: 10.1055/a-2216-8879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Diagnosis and therapy of orbital diseases is an interdisciplinary challenge, in which i.e. otorhinolaryngologists, ophthalmologists, radiologists, radiation therapists, maxillo-facial surgeons, endocrinologists, and pediatricians are involved. This review article describes frequent diseases which both, otolaryngologists and ophthalmologists are concerned with in interdisciplinary settings. In particular the inflammatory diseases of the orbit including orbital complications, autoimmunological diseases of the orbit including Grave´s orbitopathy, and primary and secondary tumors of the orbit are discussed. Beside describing the clinical characteristics and diagnostic steps the article focusses on the interdisciplinary therapy. The review is completed by the presentation of most important surgical approaches to the orbit, their indications and possible complications. The authors tried to highlight the relevant facts despite the shortness of the text.
Collapse
Affiliation(s)
| | - H-J Welkoborsky
- Univ. Klinik für Augenheilkunde Universitätsmedizin Essen, Klinik für HNO-Heilkunde, Kopf- und Halschirurgie, Klinikum Nordstadt der KRH
| |
Collapse
|
11
|
Buonfiglio F, Ponto KA, Pfeiffer N, Kahaly GJ, Gericke A. Redox mechanisms in autoimmune thyroid eye disease. Autoimmun Rev 2024; 23:103534. [PMID: 38527685 DOI: 10.1016/j.autrev.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Thyroid eye disease (TED) is an autoimmune condition affecting the orbit and the eye with its adnexa, often occurring as an extrathyroidal complication of Graves' disease (GD). Orbital inflammatory infiltration and the stimulation of orbital fibroblasts, triggering de novo adipogenesis, an overproduction of hyaluronan, myofibroblast differentiation, and eventual tissue fibrosis are hallmarks of the disease. Notably, several redox signaling pathways have been shown to intensify inflammation and to promote adipogenesis, myofibroblast differentiation, and fibrogenesis by upregulating potent cytokines, such as interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β. While existing treatment options can manage symptoms and potentially halt disease progression, they come with drawbacks such as relapses, side effects, and chronic adverse effects on the optic nerve. Currently, several studies shed light on the pathogenetic contributions of emerging factors within immunological cascades and chronic oxidative stress. This review article provides an overview on the latest advancements in understanding the pathophysiology of TED, with a special focus of the interplay between oxidative stress, immunological mechanisms and environmental factors. Furthermore, cutting-edge therapeutic approaches targeting redox mechanisms will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Katharina A Ponto
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - George J Kahaly
- Medicine I (GJK), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
12
|
Mi N, Li Z, Zhang X, Gao Y, Wang Y, Liu S, Wang S. Identification of potential immunotherapeutic targets and prognostic biomarkers in Graves' disease using weighted gene co-expression network analysis. Heliyon 2024; 10:e27175. [PMID: 38468967 PMCID: PMC10926144 DOI: 10.1016/j.heliyon.2024.e27175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Graves' disease (GD) is an autoimmune disorder characterized by hyperthyroidism resulting from autoantibody-induced stimulation of the thyroid gland. Despite recent advancements in understanding GD's pathogenesis, the molecular processes driving disease progression and treatment response remain poorly understood. In this study, we aimed to identify crucial immunogenic factors associated with GD prognosis and immunotherapeutic response. To achieve this, we implemented a comprehensive screening strategy that combined computational immunogenicity-potential scoring with multi-parametric cluster analysis to assess the immunomodulatory genes in GD-related subtypes involving stromal and immune cells. Utilizing weighted gene co-expression network analysis (WGCNA), we identified co-expressed gene modules linked to cellular senescence and immune infiltration in CD4+ and CD8+ GD samples. Additionally, gene set enrichment analysis enabled the identification of hallmark pathways distinguishing high- and low-immune subtypes. Our WGCNA analysis revealed 21 gene co-expression modules comprising 1,541 genes associated with immune infiltration components in various stages of GD, including T cells, M1 and M2 macrophages, NK cells, and Tregs. These genes primarily participated in T cell proliferation through purinergic signaling pathways, particularly neuroactive ligand-receptor interactions, and DNA binding transcription factor activity. Three genes, namely PRSS1, HCRTR1, and P2RY4, exhibited robustness in GD patients across multiple stages and were involved in immune cell infiltration during the late stage of GD (p < 0.05). Importantly, HCRTR1 and P2RY4 emerged as potential prognostic signatures for predicting overall survival in high-immunocore GD patients (p < 0.05). Overall, our study provides novel insights into the molecular mechanisms driving GD progression and highlights potential key immunogens for further investigation. These findings underscore the significance of immune infiltration-related cellular senescence in GD therapy and present promising targets for the development of new immunotherapeutic strategies.
Collapse
Affiliation(s)
- Nianrong Mi
- Department of General Practice, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Zhe Li
- Department of Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Xueling Zhang
- Department of Integrated Chinese and Western Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Yingjing Gao
- Department of Endocrinology, Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Yanan Wang
- Department of Endocrinology, Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Siyan Liu
- Department of Endocrinology, Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Shaolian Wang
- Department of Integrated Chinese and Western Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250013, China
| |
Collapse
|
13
|
Tong X, Shen Q. Identification of immune-related regulatory networks and diagnostic biomarkers in thyroid eye disease. Int Ophthalmol 2024; 44:38. [PMID: 38332455 DOI: 10.1007/s10792-024-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Thyroid eye disease (TED) is an orbit-associated autoimmune inflammatory disorder intricately linked to immune dysregulation. Complete pathogenesis of TED remains elusive. This work aimed to mine pathogenesis of TED from immunological perspective and identify diagnostic genes. METHODS Gene expression microarray data for TED patients were downloaded from Gene Expression Omnibus, immune-related genes (IRGs) were from ImmPort database, and TED-related transcription factors (TFs) were from Cirtrome Cancer database. Differential analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Regulatory networks of TFs and IRGs were constructed with Cytoscape. Diagnostic biomarkers in TED were identified through LASSO. Immune cell infiltration analysis was performed using CIBERSORT. RESULTS Twenty-three immune-related DEmRNAs were revealed and were primarily enriched in humoral immune response, positive regulation of inflammatory response, IL-17, and TNF pathways. Co-expression regulatory network included four TFs and 16 immune-related DEmRNAs. Seven diagnostic genes were identified, with Area Under the Curve (AUC) of 0.993 for training set and AUC value of 0.836 for validation set. TED patients exhibited elevated infiltration levels by macrophages M2, mast cells, and CD8 T cells among 22 immune cell types, whereas macrophages M2 and mast cells resting were significantly lower than normal group. CONCLUSIONS The seven feature genes had high diagnostic value for TED patients. Our work explored regulatory network and diagnostic biomarkers, laying theoretical basis for TED diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangmei Tong
- The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310002, China
- Department of General Surgery, The First People's Hospital of Tonglu County, Tonglu, 311500, China
| | - Qianyun Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310002, China.
| |
Collapse
|
14
|
Eckstein A, Stöhr M, Görtz GE, Gulbins A, Möller L, Fuehrer-Sakel D, Oeverhaus M. Current Therapeutic Approaches for Graves' Orbitopathy - are Targeted Therapies the Future? Klin Monbl Augenheilkd 2024; 241:48-68. [PMID: 37799096 DOI: 10.1055/a-2186-5548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Graves' orbitopathy is an autoimmune disease of the orbit that most frequently occurs with Graves' hyperthyroidism. The occurrence of autoantibodies directed against the TSH receptor (TRAb) is of central importance for the diagnosis and pathogenesis. These autoantibodies are mostly stimulating, and induce uncontrolled hyperthyroidism and tissue remodelling in the orbit and more or less pronounced inflammation. Consequently, patients suffer to a variable extent from periocular swelling, exophthalmos, and fibrosis of the eye muscles and thus restrictive motility impairment with double vision. In recent decades, therapeutic approaches have mainly comprised immunosuppressive treatments and antithyroid drug therapy for hyperthyroidism to inhibit thyroid hormone production. With the recognition that TRAb also activates an important growth factor receptor, IGF1R (insulin-like growth factor 1 receptor), biological agents have been developed. Teprotumumab (an inhibitory IGF1R antibody) has already been approved in the USA and the therapeutic effects are enormous, especially with regard to the reduction of exophthalmos. Side effects are to be considered, especially hyperglycaemia and hearing loss. It is not yet clear whether the autoimmune reaction (development of the TRAb/attraction of immunocompetent cells) is also influenced by anti-IGF1R inhibiting agents. Recurrences after therapy show that the inhibition of antibody development must be included in the therapeutic concept, especially in severe cases.
Collapse
Affiliation(s)
- Anja Eckstein
- Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
| | - Mareile Stöhr
- Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
| | - Gina-Eva Görtz
- Labor für Molekulare Augenheilkunde, Universität Duisburg-Essen, Duisburg, Deutschland
| | - Anne Gulbins
- Labor für Molekulare Augenheilkunde, Universität Duisburg-Essen, Duisburg, Deutschland
| | - Lars Möller
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Deutschland
| | - Dagmar Fuehrer-Sakel
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen, Deutschland
| | - Michael Oeverhaus
- Klinik für Augenheilkunde, Universitätsklinikum Essen, Deutschland
- Gemeinschaftspraxis Dres. Oeverhaus & Weiß, Rietberg, Deutschland
| |
Collapse
|
15
|
Cieplińska K, Niedziela E, Kowalska A. Immunological Processes in the Orbit and Indications for Current and Potential Drug Targets. J Clin Med 2023; 13:72. [PMID: 38202079 PMCID: PMC10780108 DOI: 10.3390/jcm13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Thyroid eye disease (TED) is an extrathyroidal manifestation of Graves' disease (GD). Similar to GD, TED is caused by an autoimmune response. TED is an autoimmune inflammatory disorder of the orbit and periorbital tissues, characterized by upper eyelid retraction, swelling, redness, conjunctivitis, and bulging eyes. The pathophysiology of TED is complex, with the infiltration of activated T lymphocytes and activation of orbital fibroblasts (OFs) and autoantibodies against the common autoantigen of thyroid and orbital tissues. Better understanding of the multifactorial pathogenesis of TED contributes to the development of more effective therapies. In this review, we present current and potential drug targets. The ideal treatment should slow progression of the disease with as little interference with patient immunity as possible. In the future, TED treatment will target the immune mechanism involved in the disease and will be based on a strategy of restoring tolerance to autoantigens.
Collapse
Affiliation(s)
| | - Emilia Niedziela
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (E.N.); (A.K.)
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; (E.N.); (A.K.)
- Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| |
Collapse
|
16
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2023:1-23. [PMID: 38100543 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Gupta R, Kalra P, Ramamurthy LB, Rath S. Thyroid Eye Disease and Its Association With Diabetes Mellitus: A Major Review. Ophthalmic Plast Reconstr Surg 2023; 39:S51-S64. [PMID: 38054986 DOI: 10.1097/iop.0000000000002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Thyroid eye disease (TED) associated with diabetes mellitus (DM) presents unique challenges. DM is a risk factor for TED. Standard management of TED with glucocorticoids (GC), orbital radiation, or teprotumumab can cause adverse events in poor glycemic control. The authors reviewed the literature on the relationship between TED and DM and the management of co-existing diseases. METHODS The authors searched PubMed with keywords "thyroid eye disease," "diabetes mellitus," and similar terms from 2013 to 2022. The authors included relevant studies after screening the abstracts. Additional references to the selected studies were included where applicable. Data were extracted from the final articles according to the preplanned outline of the review. RESULTS The initial search yielded 279 abstracts. The final review included 93 articles. TED and DM interact at multiple levels-genetic, immunologic, cellular, nutritional, and metabolic. Both DM and thyroid dysfunction exacerbate the morbidity caused by the other. Metabolic factors also affect the inflammatory pathway for TED. Patients with DM develop TED with greater frequency and severity, necessitating interventions for vision salvage. Agents (GC, teprotumumab, or radiation) used for TED are often unsuitable for treatment with DM, especially if there is poor glycemic control or diabetic retinopathy. There were no studies on using steroid-sparing agents in TED with DM. CONCLUSION TED and DM co-exist because of multiple intersections in the pathophysiology. Challenges in the treatment include increased TED severity and risk of hyperglycemia and retinopathy. Multidisciplinary teams best undertake treatment of TED with DM.
Collapse
Affiliation(s)
- Roshmi Gupta
- Orbit, Oculoplasty and Ocular Oncology, Trustwell Hospital, Bengaluru, Karnataka, India
| | - Pramila Kalra
- Department of Endocrinology, Ramaiah Medical College and Hospitals, Bengaluru, Karnataka, India
| | - Lakshmi B Ramamurthy
- Department of Ophthalmology, Karnataka Institute of Medical Sciences, Hubli, Karnataka, India
| | - Suryasnata Rath
- Ophthalmic Plastics, Orbit, and Ocular Oncology Services, Mithu Tulsi Chanrai campus, L V Prasad Eye Institute, Bhubaneswar, India
| |
Collapse
|
18
|
Fenneman AC, van der Spek AH, Hartstra A, Havik S, Salonen A, de Vos WM, Soeters MR, Saeed P, Nieuwdorp M, Rampanelli E. Intestinal permeability is associated with aggravated inflammation and myofibroblast accumulation in Graves' orbitopathy: the MicroGO study. Front Endocrinol (Lausanne) 2023; 14:1173481. [PMID: 38107520 PMCID: PMC10724020 DOI: 10.3389/fendo.2023.1173481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/20/2023] [Indexed: 12/19/2023] Open
Abstract
Background Graves' disease (GD) and Graves' orbitopathy (GO) result from ongoing stimulation of the TSH receptor due to autoantibodies acting as persistent agonists. Orbital pre-adipocytes and fibroblasts also express the TSH receptor, resulting in expanded retro-orbital tissue and causing exophthalmos and limited eye movement. Recent studies have shown that GD/GO patients have a disturbed gut microbiome composition, which has been associated with increased intestinal permeability. This study hypothesizes that enhanced intestinal permeability may aggravate orbital inflammation and, thus, increase myofibroblast differentiation and the degree of fibrosis. Methods Two distinct cohorts of GO patients were studied, one of which was a unique cohort consisting of blood, fecal, and retro-orbital tissue samples. Intestinal permeability was assessed by measuring serum lipopolysaccharide-binding protein (LBP), zonulin, TLR5, and TLR9 ligands. The influx of macrophages and accumulation of T-cells and myofibroblast were quantified in orbital connective tissue. The NanoString immune-oncology RNA targets panel was used to determine the transcriptional profile of active fibrotic areas within orbital sections. Results GO patients displayed significantly higher LBP serum concentrations than healthy controls. Within the MicroGO cohort, patients with high serum LBP levels also showed higher levels of zonulin and TLR5 and TLR9 ligands in their circulation. The increased intestinal permeability was accompanied by augmented expression of genes marking immune cell infiltration and encoding key proteins for immune cell adhesion, antigen presentation, and cytokine signaling in the orbital tissue. Macrophage influx was positively linked to the extent of T cell influx and fibroblast activation within GO-affected orbital tissues. Moreover, serum LBP levels significantly correlated with the abundance of specific Gram-negative gut bacteria, linking the gut to local orbital inflammation. Conclusion These results indicate that GO patients have enhanced intestinal permeability. The subsequent translocation of bacterial compounds to the systemic circulation may aggravate inflammatory processes within the orbital tissue and, as a consequence, augment the proportion of activated myofibroblasts, which actively secrete extracellular matrix leading to retro-orbital tissue expansion. These findings warrant further exploration to assess the correlation between specific inflammatory pathways in the orbital tissue and the gut microbiota composition and may pave the way for new microbiota-targeting therapies.
Collapse
Affiliation(s)
- Aline C. Fenneman
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Anne H. van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Annick Hartstra
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Stefan Havik
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Peeroz Saeed
- Department of Ophthalmology, Amsterdam University Medical Centre (UMC), Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
20
|
Wang L, Zhang M, Wang Y, Shi B. Graves' Orbitopathy Models: Valuable Tools for Exploring Pathogenesis and Treatment. Horm Metab Res 2023; 55:745-751. [PMID: 37903495 DOI: 10.1055/a-2161-5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Graves' orbitopathy (GO) is the most common extrathyroidal complication of Graves' disease (GD) and severely affects quality of life. However, its pathogenesis is still poorly understood, and therapeutic options are limited. Animal models are important tools for preclinical research. The animals in some previous models only exhibited symptoms of hyperthyroidism without ocular lesions. With the improvements achieved in modeling methods, some progressive animal models have been established. Immunization of mice with A subunit of the human thyroid stimulating hormone receptor (TSHR) by either adenovirus or plasmid (with electroporation) is widely used and convincing. These models are successful to identify that the gut microbiota influences the occurrence and severity of GD and GO, and sex-related risk factors may be key contributors to the female bias in the occurrence of GO rather than sex itself. Some data provide insight that macrophages and CD8+ T cells may play an important pathogenic role in the early stage of GO. Our team also replicated the time window from GD onset to GO onset and identified a group of CD4+ cytotoxic T cells. In therapeutic exploration, TSHR derived peptides, fingolimod, and rapamycin offer new potential options. Further clinical trials are needed to investigate these drugs. With the increasing use of these animal models and more in-depth studies of the new findings, scientists will gain a clearer understanding of the pathogenesis of GO and identify more treatments for patients.
Collapse
Affiliation(s)
- Ling Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Xavier NF, Lucena DT, Cruz AAV. Monoclonal Antibodies for the Treatment of Graves Orbitopathy: Precision Medicine? Ophthalmic Plast Reconstr Surg 2023; 39:307-315. [PMID: 36727923 DOI: 10.1097/iop.0000000000002315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To summarize the development, nomenclature, and rationale of the reported use of monoclonal antibodies (Mabs) in Graves Orbitopathy (GO) and to undertake a systematic review of the management of GO with Mabs. METHODS The Pubmed and Embase databases and the Federal Brazilian searching site (Periódicos-CAPES) were screened. The authors searched all the keywords "monoclonal antibodies," "adalimumab," "belimumab," "infliximab," "rituximab," "teprotumumab," and "tocilizumab" combined with the terms "Graves Orbitopathy," "Graves eye disease" and "thyroid eye disease." All the articles published in English, French, and Spanish from 2000 to May 2022 were screened. Only publications with quantitative data on the activity of orbitopathy, proptosis, or both were included. RESULTS Seventy-six articles of the 954 screened records met the inclusion criteria. Seven Mabs were described for treating GO. The three most reported Mabs were Rituximab, Tocilizumab, and Teprotumumab. Only eight randomized clinical trials compared the effect of these three Mabs and Belimumab with the effect of steroids or placebos. Adalimumab, Infliximab, and K1-70 only appeared in a few case series and case reports. Frequent mild-to-moderate and few major side effects occurred with the three most used Mabs. Relapse rates ranged from 7.4% for Tocilizumab to at least 29.4% for Teprotumumab. No randomized clinical trials compared Mabs head-to-head. CONCLUSION Considering the lack of head-to-head comparisons between Mabs, the relapse rate, the possibility of severe collateral effects, and the cost of Mabs, it is not clear which Mab is the safest and most useful to treat GO.
Collapse
Affiliation(s)
- Naiara F Xavier
- Department of Ophthalmology, School of Medicine of Ribeirão Preto - University of São Paulo, Brasil
| | | | | |
Collapse
|
22
|
Ueland HO, Ulvik A, Løvås K, Wolff ASB, Breivik LE, Stokland AEM, Rødahl E, Nilsen RM, Husebye E, Ueland GÅ. Systemic Activation of the Kynurenine Pathway in Graves Disease With and Without Ophthalmopathy. J Clin Endocrinol Metab 2023; 108:1290-1297. [PMID: 36611247 PMCID: PMC10188306 DOI: 10.1210/clinem/dgad004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
CONTEXT Graves disease (GD) is one of the most common autoimmune disorders. Recent literature has shown an immune response involving several different inflammatory related proteins in these patients. OBJECTIVE This work aimed to characterize the kynurenine pathway, activated during interferon-γ (IFN-γ)-mediated inflammation and cellular (T-helper type 1 [Th1] type) immunity, in GD patients with and without thyroid eye disease (TED). METHODS We analyzed 34 biomarkers by mass spectrometry in serum samples from 100 patients with GD (36 with TED) and 100 matched healthy controls. The analytes included 10 metabolites and 3 indices from the kynurenine pathway, 6 microbiota-derived metabolites, 10 B-vitamers, and 5 serum proteins reflecting inflammation and kidney function. RESULTS GD patients showed significantly elevated levels of 7 biomarkers compared with healthy controls (omega squared [ω2] > 0.06; P < .01). Of these 7, the 6 biomarkers with the strongest effect size were all components of the kynurenine pathway. Factor analysis showed that biomarkers related to cellular immunity and the Th1 responses (3-hydroxykynurenine, kynurenine, and quinolinic acid with the highest loading) were most strongly associated with GD. Further, a factor mainly reflecting acute phase response (C-reactive protein and serum amyloid A) showed weaker association with GD by factor analysis. There were no differences in biomarker levels between GD patients with and without TED. CONCLUSION This study supports activation of IFN-γ inflammation and Th1 cellular immunity in GD, but also a contribution of acute-phase reactants. Our finding of no difference in systemic activation of the kynurenine pathway in GD patients with and without TED implies that the local Th1 immune response in the orbit is not reflected systemically.
Collapse
Affiliation(s)
- Hans Olav Ueland
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| | - Kristian Løvås
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Anette S B Wolff
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, 5021 Bergen, Norway
| | - Lars Ertesvåg Breivik
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, 5021 Bergen, Norway
| | | | - Eyvind Rødahl
- Department of Ophthalmology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Roy Miodini Nilsen
- Department of Health and Functioning, Western Norway University of Applied Sciences, 5063 Bergen, Norway
| | - Eystein Husebye
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, 5021 Bergen, Norway
| | | |
Collapse
|
23
|
Abstract
Thyroid-associated orbitopathy, the most common extrathyroidal manifestation of Graves' disease, is characterized by orbital inflammatory infiltration and activation of orbital fibroblasts, which mediates de novo adipogenesis, excessive production of hyaluronan, myofibroblast differentiation and ultimately tissue fibrosis. Interactions among T cells, B cells, and orbital fibroblasts result in their activation and perpetuation of orbital inflammation as well as tissue remodelling. T helper 17 cells belong to a newly identified pathogenic CD4+ T cell subset which possesses prominent pro-inflammatory and profibrotic capabilities. Thyroid stimulating hormone receptor/insulin-like growth factor-1 receptor crosstalk and the downstream signalling pathways of both receptors represent the major mechanisms leading to activation of orbital fibroblasts. Thyroid stimulating hormone receptor autoantibody is the disease specific biomarker of great clinical relevance and utility. There is growing evidence that oxidative stress, gut microbiome and epigenetics also play a role in the pathogenesis and their manipulation may represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Alan Chun Hong Lee
- Division of Endocrinology and Metabolism, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz 55101, Germany.
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz 55101, Germany.
| |
Collapse
|
24
|
Lu Y, Wang Y, Wang Y, Wu Y, Huang Y, Liu X, Zhang S, Zhong S, Li Y, Li B, Sun J, Fang S, Zhou H. M1-Like Macrophages Modulate Fibrosis and Inflammation of Orbital Fibroblasts in Graves' Orbitopathy: Potential Relevance to Soluble Interleukin-6 Receptor. Thyroid 2023; 33:338-350. [PMID: 36617890 DOI: 10.1089/thy.2022.0254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Graves' orbitopathy (GO) is a disfiguring and sight-threatening autoimmune disease. Previous studies have shown the infiltration of macrophages in GO orbital connective tissues. However, the immunophenotypes of macrophages and their modulatory effects on orbital fibroblasts (OFs) have not been examined so far. In this study, we sought to determine the pathophysiology of macrophages in GO. Methods: In this case-control study, orbital connective tissues collected from 40 GO patients and 20 healthy controls were immunohistochemically stained for cytokines and macrophage cell surface antigens. The polarization of orbital-infiltrating macrophages was investigated by flow cytometry and immunofluorescence. Effects of interleukin (IL)-6 combined with soluble IL-6 receptor (sIL-6R) on the proliferation, differentiation, and inflammation of different OF subsets were examined by CCK-8, Western blotting, and Luminex assays, respectively. The antigen-presenting abilities of different OF subsets under IL-6/sIL-6R signaling were studied by proteomics. Finally, the differentiation of CD8+ IL-17A-producing T cells by sIL-6R was tested. Results: GO orbital connective tissues displayed increased IL-6, sIL-6R, STAT3, and IL-17A levels. CD86+ M1-like macrophages were predominant in active GO patients, while stable GO patients tended to have more CD163+ M2-like macrophages. The expression of IL-6 was higher in M1-like macrophages, and the expression of transforming growth factor-β was higher in M2-like macrophages both in GO orbital connective tissues in situ in vivo and in cell culture system in vitro. The IL-6/sIL-6R stimulation promoted the fibrosis of both CD34+ and CD34- OFs. Monocyte chemoattractant protein-1 expression was also induced by IL-6/sIL-6R stimulation in both OF subsets. IL-6/sIL-6R stimulation enhanced the antigen processing of CD34+ OFs through upregulating the intact major histocompatibility complex I and antigen transporters. However, the protein expressions of the thyrotropin receptor and insulin-like growth factor 1 receptor could not be directly increased by IL-6/sIL-6R stimulation in CD34+ OFs. Furthermore, sIL-6R was conducive to the differentiation of CD8+ IL-17A-producing T cells. Conclusions: Our study demonstrated the immunophenotypes of orbital-infiltrating macrophages that may activate OFs depending on the IL-6/sIL-6R signaling in GO. Our preclinical findings implicate, at least in part, the molecular rationale for blocking sIL-6R as a promising therapeutic agent for GO.
Collapse
Affiliation(s)
- Yi Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yu Wu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xingtong Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shuo Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sisi Zhong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
25
|
Sun R, Yang M, Lin C, Wu Y, Sun J, Zhou H. A clinical study of topical treatment for thyroid-associated ophthalmopathy with dry eye syndrome. BMC Ophthalmol 2023; 23:72. [PMID: 36803227 PMCID: PMC9940084 DOI: 10.1186/s12886-023-02805-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
INTRODUCTION Clinically, thyroid-associated ophthalmopathy (TAO) patients were suffered from dry eye syndrome. Only a few relevant studies were about this topic. Our study was determined to provide high-level evidence for the treatment of TAO with dry eye syndrome. PURPOSE To compare the clinical effects of vitamin A palmitate eye gel and sodium hyaluronate eye drop forTAO patients with dry eye syndrome. METHODS The study was conducted in the Ophthalmology Department of the Ninth People's Hospital Affiliated with the Medical College of Shanghai Jiao Tong University from May to October 2020. A total of 80 mild or moderate-to-severe TAO patients with dry eye syndrome were randomly divided into two groups. The disease stages of all subjects were inactive. Patients in group A were treated with vitamin A palmitate eye gel three times/day for one month and sodium hyaluronate eye drop in group B. The index including break-up time (BUT) and Schirmer I test (ST), corneal fluorescence staining (FL), ocular surface disease index (OSDI), and adverse reactions were recorded by the same clinician at baseline and 1 month after treatment. The data were analyzed by SPSS 24.0. RESULTS Finally, 65 subjects completed the treatment. The average age of the patients in Group A was 38.1 ± 11.4 years, and that in Group B was 37.26 ± 10.67 years. 82% of the subjects in group A were female and 74% in group B. There was no significant difference between the two groups at baseline, including the value of ST, BUT, OSDI, and FL grade. After the treatment, the effective rate was 91.2% in group A, of which the value of BUT and FL grade was significantly improved (P < 0.001). The effective rate in group B was 67.7%, of which the value of OSDI score and FL grade was significantly improved (P = 0.002). In addition, the BUT value of group A was significantly longer than that of group B (P = 0.009). CONCLUSION InTAO patients with dry eye syndrome, vitamin A palmitate gel and sodium hyaluronate eye drop improved the dry eye and promoted corneal epithelial repair. Vitamin A palmitate gel improves the stability of tear film, while sodium hyaluronate eye drop improves patients' subjective discomfort.
Collapse
Affiliation(s)
- Rou Sun
- grid.412523.30000 0004 0386 9086Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Muyue Yang
- grid.412523.30000 0004 0386 9086Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Chenyi Lin
- grid.412523.30000 0004 0386 9086Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Yu Wu
- grid.412523.30000 0004 0386 9086Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
26
|
Hai YP, Lee ACH, Chen K, Kahaly GJ. Traditional Chinese medicine in thyroid-associated orbitopathy. J Endocrinol Invest 2023; 46:1103-1113. [PMID: 36781592 DOI: 10.1007/s40618-023-02024-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Orbital fibroblasts (OF) are considered the central target cells in the pathogenesis of thyroid-associated orbitopathy (TAO), which comprises orbital inflammation, orbital tissue edema, adipogenesis, fibrosis, oxidative stress and autophagy. Certain active ingredients of traditional Chinese medicine (TCM) demonstrated inhibition of TAO-OF in pre-clinical studies and they could be translated into novel therapeutic strategies. METHODS The pertinent and current literature of pre-clinical studies on TAO investigating the effects of active ingredients of TCM was reviewed using the NCBI PubMed database. RESULTS Eleven TCM compounds demonstrated inhibition of TAO-OF in-vitro and three of them (polydatin, curcumin, and gypenosides) resulted in improvement in TAO mouse models. Tanshinone IIA reduced inflammation, oxidative stress and adipogenesis. Both resveratrol and its precursor polydatin displayed anti-oxidative and anti-adipogenic properties. Celastrol inhibited inflammation and triptolide prevented TAO-OF activation, while icariin inhibited autophagy and adipogenesis. Astragaloside IV reduced inflammation via suppressing autophagy and inhibited fat accumulation as well as collagen deposition. Curcumin displayed multiple actions, including anti-inflammatory, anti-oxidative, anti-adipogenic, anti-fibrotic and anti-angiogenic effects via multiple signaling pathways. Gypenosides reduced inflammation, oxidative stress, tissue fibrosis, as well as oxidative stress mediated autophagy and apoptosis. Dihydroartemisinin inhibited OF proliferation, inflammation, hyaluronan (HA) production, and fibrosis. Berberine attenuated inflammation, HA production, adipogenesis, and fibrosis. CONCLUSIONS Clinical trials of different phases with adequate power and sound methodology will be warranted to evaluate the appropriate dosage, safety and efficacy of these compounds in the management of TAO.
Collapse
Affiliation(s)
- Y P Hai
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - A C H Lee
- Division of Endocrinology and Metabolism, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - K Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - G J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Langenbeckstreet 1, 55131, Mainz, Germany.
| |
Collapse
|
27
|
Zhang M, Chong KK, Chen ZY, Guo H, Liu YF, Kang YY, Li YJ, Shi TT, Lai KK, He MQ, Ye K, Kahaly GJ, Shi BY, Wang Y. Rapamycin improves Graves' orbitopathy by suppressing CD4+ cytotoxic T lymphocytes. JCI Insight 2023; 8:160377. [PMID: 36580373 PMCID: PMC9977423 DOI: 10.1172/jci.insight.160377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ cytotoxic T lymphocytes (CTLs) were recently implicated in immune-mediated inflammation and fibrosis progression of Graves' orbitopathy (GO). However, little is known about therapeutic targeting of CD4+ CTLs. Herein, we studied the effect of rapamycin, an approved mTOR complex 1 (mTORC1) inhibitor, in a GO mouse model, in vitro, and in patients with refractory GO. In the adenovirus-induced model, rapamycin significantly decreased the incidence of GO. This was accompanied by the reduction of both CD4+ CTLs and the reduction of orbital inflammation, adipogenesis, and fibrosis. CD4+ CTLs from patients with active GO showed upregulation of the mTOR pathway, while rapamycin decreased their proportions and cytotoxic function. Low-dose rapamycin treatment substantially improved diplopia and the clinical activity score in steroid-refractory patients with GO. Single-cell RNA-Seq revealed that eye motility improvement was closely related to suppression of inflammation and chemotaxis in CD4+ CTLs. In conclusion, rapamycin is a promising treatment for CD4+ CTL-mediated inflammation and fibrosis in GO.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kelvin K.L. Chong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Science, The Prince of Wales Hospital, Hong Kong, China
| | - Zi-yi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu-feng Liu
- Biobank of The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong-yong Kang
- Genome Institute and,Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang-jun Li
- Department of Ophthalmology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Ting-ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kenneth K.H. Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Ming-qian He
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Ye
- Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China.,School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China.,Faculty of Science, Leiden University, Leiden, Netherlands
| | - George J. Kahaly
- Molecular Thyroid Lab, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Bing-yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China.,Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and
| |
Collapse
|
28
|
Jiang M, Fu Y, Wang P, Yan Y, Zhao J, Wang Y, Yan S. Looking Beyond Th17 Cells: A Role for Th17.1 Cells in Thyroid-associated Ophthalmopathy? Endocrinology 2023; 164:6980482. [PMID: 36624983 DOI: 10.1210/endocr/bqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO), an ordinary extrathyroid syndrome of Graves' disease (GD), is closely associated with immunity. T helper (Th) 17, Th1, and Th2 cells in Th lineages are thought to be related to the disease pathogenesis. Recently, there has been growing evidence that Th17.1 cells are involved in the development and progression of TAO. The characteristics of this pathology are similar to those of Th1 and Th17 lymphocytes, which secrete interferon (IFN)-γ and interleukin (IL)-17A. This paper reviews the potential role of the Th17.1 subgroup pathogenesis of TAO. The therapeutic effects of drugs that can modulate Th17.1 cell populations are also highlighted. Rich Th17.1 cells exist in peripheral blood and ocular tissues of patients suffering from thyroid eye disease (TED), especially those with severe or steroid-resistant TAO. The bias of Th17.1 cells to secrete cytokines partly determines the pathological outcome of TAO patients. Th17.1 cells are important in regulating fibrosis, adipocyte differentiation, and hyaluronic acid production. In summary, the Th17.1 subpopulation is essential in the onset and progression of TED, and targeting Th17.1 cell therapy may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Minmin Jiang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ping Wang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yan Yan
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jingxiao Zhao
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ying Wang
- International Medical Faculty, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
29
|
Hai YP, Saeed MEM, Ponto KA, Elflein HM, Lee ACH, Fang S, Zhou H, Frommer L, Längericht J, Efferth T, Kahaly GJ. A Multicenter, Single-Blind, Case-Control, Immunohistochemical Study of Orbital Tissue in Thyroid Eye Disease. Thyroid 2022; 32:1547-1558. [PMID: 36128805 DOI: 10.1089/thy.2022.0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Thyroid eye disease (TED) involves several pathogenic pathways and a battery of infiltrating mononuclear cells, cytokines, and chemokines in the orbit. Revealing the main molecules, which play a major role in the pathogenesis of TED, will help developing novel treatment strategies. Methods: In a multicenter, single-blind, case-control study, 60 tissue samples were collected during orbital decompression (44 TED patients) or non-TED related oculoplastic (16 controls) surgeries. Formalin-fixation and paraffin embedding preserved orbital tissue. Tissue sections were immunostained with 18 antibodies by the micro-polymer labeling technique. Immunostaining slides were scanned by Panoramic Desk and blindly evaluated by a user-independent viewer software. Results: Marked lymphocyte infiltration was observed in orbital tissue specimens of patients with clinically active TED (n = 22) and to a much lesser extent in inactive cases (n = 22), while it was absent in controls. Increased vascularity was noted in all samples, with orbital congestion in specimens of clinically active TED. Tissue fibrosis was present in TED samples but not in controls. Immunohistochemistry of orbital tissue clearly differentiated between TED and controls, as well as between active and inactive TED. In contrast to controls and with the exception of cluster of differentiation 20 (CD20), 17 out of 18 antibodies were highly expressed in orbital connective tissue of TED patients. Especially, thyrotropin receptor (TSH-R), insulin-like growth factor 1 receptor (IGF-1R), CD40, cluster of differentiation 40 ligand (CD40L), CD3, CD68, interleukin-17A (IL-17A), IL-23A, IL-1β, IL-4, regulated on activation, normal T cell expressed and secreted (RANTES), macrophage chemoattractant protein 1 (MCP-1), IL-16, and B cell activating factor (BAFF) were overexpressed in clinically active TED (all p < 0.001). Also, the expression of CD40L, IL-17A, IL-23A, IL-6, IL-1β, RANTES, and BAFF was very high (TED/control ratio >3), moderate (ratio >2), and low in active (p < 0.001), inactive TED and controls, respectively. The expression of TSH-R, IGF-1R, CD40, CD40L, CD3, CD68, CD20, IL-17A, IL-23A, RANTES, MCP-1, and BAFF positively and significantly correlated with both serum TSH-R stimulatory antibody concentrations and clinical activity scores while it negatively correlated with TED duration. Orbital irradiation decreased TSH-R (p < 0.001) and IGF-1R expression (p = 0.012); in contrast, neither smoking, age, nor gender did impact immunohistochemical staining. Conclusions: Adaptive and cell-mediated immunity, overexpression of TSH-R/IGF-1R and CD40/CD40L are the relevant pathomechanisms in TED. Targeting these key players in the active phase of the disease offers specific and novel treatment approaches.
Collapse
Affiliation(s)
- Yuan-Ping Hai
- Molecular Thyroid Research Lab, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| | | | - Heike M Elflein
- Department of Ophthalmology, JGU Medical Center, Mainz, Germany
| | - Alan Chun Hong Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Queen Mary Hospital, Hong Kong, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Huangpu, Shanghai, China
| | - Lara Frommer
- Molecular Thyroid Research Lab, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Jan Längericht
- Molecular Thyroid Research Lab, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, Germany
| | - George J Kahaly
- Molecular Thyroid Research Lab, Department of Medicine I, Johannes Gutenberg University (JGU) Medical Center, Mainz, Germany
| |
Collapse
|
30
|
Zhang P, Zhang X, Xu F, Xu W, Zhu H. Elevated expression of interleukin-27, IL-35, and decreased IL-12 in patients with thyroid-associated ophthalmopathy. Graefes Arch Clin Exp Ophthalmol 2022; 261:1091-1100. [PMID: 36370169 DOI: 10.1007/s00417-022-05856-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Thyroid-associated ophthalmopathy (TAO) is a chronic autoimmune disease. The interleukin-12 (IL-12) family includes IL-12, IL-23, IL-27, and IL-35, all of which play important roles in autoimmunity. Thus far, the relationship between IL-12, IL-27, and IL-35 and the TAO has not been evaluated. METHODS Seventy-five serum samples from patients with TAO were collected. Serum samples from 90 healthy controls (HC), 55 patients with Graves' disease (GD), 38 patients with uveitis (UV), 17 patients with Sjogren's syndrome (SS), and 65 patients with rheumatoid arthritis (RA) were collected as controls. The associations between IL-27, IL-35, IL-12, and other clinical parameters were analyzed. RESULTS Elevated serum levels of IL-27/IL-35 and decreased serum IL-12 levels were observed in TAO patients compared to those in HC (p < 0.001). For HC, we observed good diagnostic ability to predict TAO (area under the curve = 0.74, 0.78, and 0.78, for IL-27, IL-35, and IL-12, respectively). For other autoimmune diseases, IL-27, IL-35, and IL-12 had the ability to discriminate between UV, RA, and SS (area under the curve = 0.80, 0.83, and 0.85 for IL-27; 0.52, 0.69, and 0.67 for IL-35). The positive detection rates of IL-12 were significantly lower in the TAO group than in the UV and RA groups (p = 0.002, 0.01). CONCLUSION IL-12, IL-27, and IL-35 have the potential as biomarkers for TAO.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xibo Zhang
- Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fen Xu
- Department of Cardiology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wangdong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
31
|
Zhang Y, Wei J, Zhou H, Li B, Chen Y, Qian F, Liu J, Xie X, Xu H. Identification of two potential immune-related biomarkers of Graves' disease based on integrated bioinformatics analyses. Endocrine 2022; 78:306-314. [PMID: 35962894 DOI: 10.1007/s12020-022-03156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Graves' disease (GD) is an autoimmune disease, the incidence of which is increasing yearly. GD requires long-life therapy. Therefore, the potential immune-related biomarkers of GD need to be studied. METHOD In our study, differentially expressed genes (DEGs) were derived from the online Gene Expression Omnibus (GEO) microarray expression dataset GSE71956. Protein‒protein interaction (PPI) network analyses were used to identify hub genes, which were validated by qPCR. GSEA was used to screen potential pathways and related immune cells. Next, CIBERSORT analysis was used to further explore the immune subtype distribution pattern among hub genes. ROC curves were used to analyze the specificity and sensitivity of hub genes. RESULT 44 DEGs were screened from the GEO dataset. Two hub genes, EEF1A1 and EIF4B, were obtained from the PPI network and validated by qPCR (p < 0.05). GSEA was conducted to identify potential pathways and immune cells related to these the two hub genes. Immune cell subtype analysis revealed that hub genes had extensive associations with many different types of immune cells, particularly resting memory CD4+ T cells. AUCs of ROC analysis were 0.687 and 0.733 for EEF1A1 and EIF4B, respectively. CONCLUSION Our study revealed two hub genes, EEF1A1 and EIF4B, that are associated with resting memory CD4+ T cells and potential immune-related molecular biomarkers and therapeutic targets of GD.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jia Wei
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hong Zhou
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Bingxin Li
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingting Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Xie
- Department of Endocrinology and Metabolism, Shanghai Traditional Chinese and Medicine Integrated Hospital, 18 Baoding Road, Hongkou District, Shanghai, 200080, China.
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
32
|
Huang Y, Wu Y, Zhang S, Lu Y, Wang Y, Liu X, Zhong S, Wang Y, Li Y, Sun J, Fang S, Zhou H. Immunophenotype of Lacrimal Glands in Graves Orbitopathy: Implications for the Pathogenesis of Th1 and Th17 Immunity. Thyroid 2022; 32:949-961. [PMID: 35469435 DOI: 10.1089/thy.2021.0671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Recent studies have reported a wide spectrum of ocular surface injuries in the context of autoimmune reactions in Graves' orbitopathy (GO). Increased expression of inflammatory mediators in tears of GO patients suggests that the lacrimal glands could be a target for immune responses. However, the immunophenotype for GO lacrimal microenvironment is not known. This study aimed to elucidate the pathological changes of GO lacrimal glands. Methods: In this case-control study, lacrimal glands were surgically collected from GO patients who underwent orbital decompression surgery and control subjects who underwent other ocular-related surgery. Bulk RNA-sequencing, flow cytometry with dimensional reduction, and immunohistochemical and multiplexed stainings were conducted. Western blotting and multipathway assays were performed in CD34+ fibroblasts derived from lacrimal and orbital tissues. Results: Increased expression of cytokines and chemokines accompanied by a variety of immune cell infiltrations mainly involving T cells, B cells, and monocytes was found in GO lacrimal glands. An in-depth investigation into T cell subsets revealed interferon (IFN)-γ-producing T helper (Th)1 and interleukin (IL)-17A-producing Th17 cell-dominated autoimmunity in the active GO lacrimal microenvironment. Both fibrosis and adipogenesis were observed in GO lacrimal tissue remodeling. IL-17A, not IFN-γ, stimulated transforming growth factor-β-initiated myofibroblast differentiation as well as 15-deoxy-Δ12,14-prostaglandin J2-initiated adipocyte differentiation in CD34+ lacrimal fibroblasts (LFs) and orbital fibroblasts (OFs), respectively. IL-17A activated many fibrotic and adipogenic-related signaling pathways in CD34+ LFs and OFs. A novel anti-IL-17A monoclonal antibody SHR-1314 could reverse the promoting effect of IL-17A on fibrosis and adipogenesis in CD34+ LFs and OFs. Conclusions: Our findings provide evidence for the infiltration of different lymphocytes into GO lacrimal microenvironment, where Th1 and Th17 cells characterize the onset of active lacrimal inflammation and contribute to tissue remodeling. These findings may have potential future therapeutic implications regarding the utility of anti-IL-17A therapy, which should be studied in future research.
Collapse
Affiliation(s)
- Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yu Wu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shuo Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xingtong Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sisi Zhong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yinwei Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
33
|
Song C, Luo Y, Yu G, Chen H, Shen J. Current insights of applying MRI in Graves' ophthalmopathy. Front Endocrinol (Lausanne) 2022; 13:991588. [PMID: 36267571 PMCID: PMC9577927 DOI: 10.3389/fendo.2022.991588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Graves' ophthalmopathy (GO) is an autoimmune disease related to Grave's disease (GD). The therapeutic strategies for GO patients are based on precise assessment of the activity and severity of the disease. However, the current assessment systems require development to accommodate updates in treatment protocols. As an important adjunct examination, magnetic resonance imaging (MRI) can help physicians evaluate GO more accurately. With the continuous updating of MRI technology and the deepening understanding of GO, the assessment of this disease by MRI has gone through a stage from qualitative to precise quantification, making it possible for clinicians to monitor the microstructural changes behind the eyeball and better integrate clinical manifestations with pathology. In this review, we use orbital structures as a classification to combine pathological changes with MRI features. We also review some MRI techniques applied to GO clinical practice, such as disease classification and regions of interest selection.
Collapse
Affiliation(s)
- Cheng Song
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yaosheng Luo
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haixiong Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- *Correspondence: Jie Shen, ; Haixiong Chen,
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Jie Shen, ; Haixiong Chen,
| |
Collapse
|
34
|
Jang SY, Kim J, Park JT, Liu CY, Korn BS, Kikkawa DO, Lee EJ, Yoon JS. Therapeutic Potential of Targeting Periostin in the Treatment of Graves' Orbitopathy. Front Endocrinol (Lausanne) 2022; 13:900791. [PMID: 35707463 PMCID: PMC9189304 DOI: 10.3389/fendo.2022.900791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Periostin is a matricellular protein that is ubiquitously expressed in normal human tissues and is involved in pathologic mechanism of chronic inflammatory and fibrotic disease. In this study we investigate periostin in the pathogenesis of Graves' orbitopathy (GO) using human orbital adipose tissue obtained from surgery and primary cultured orbital fibroblasts in vitro. POSTN (gene encoding periostin) expression in Graves' orbital tissues and healthy control tissues was studied, and the role of periostin in GO pathologic mechanism was examined through small-interfering RNA (siRNA)-mediated silencing. POSTN gene expression was significantly higher in Graves' orbital tissues than healthy control tissues in real-time PCR results, and immunohistochemical staining revealed higher expression of periostin in Graves' orbital tissues than normal tissues. Silencing periostin using siRNA transfection significantly attenuated TGF-β-induced profibrotic protein production and phosphorylated p38 and SMAD protein production. Knockdown of periostin inhibited interleukin-1 β -induced proinflammatory cytokines production as well as phosphorylation of NF-κB and Ak signaling protein. Adipocyte differentiation was also suppressed in periostin-targeting siRNA transfected GO cells. We hypothesize that periostin contributes to the pathogenic process of inflammation, fibrosis and adipogenesis of GO. Our study provides in vitro evidence that periostin may be a novel potential therapeutic target for the treatment of GO.
Collapse
Affiliation(s)
- Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Jinjoo Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Catherine Y. Liu
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Bobby S. Korn
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Eun Jig Lee
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jin Sook Yoon,
| |
Collapse
|
35
|
Liang Y, Ding S, Wang X, Hu C, Zhang Y, Hu Y, Zhang Y, Kong H, Xia W, Jing Q, Hu Y, Zhao C, Wu L. Adipose/Connective Tissue From Thyroid-Associated Ophthalmopathy Uncovers Interdependence Between Methylation and Disease Pathogenesis: A Genome-Wide Methylation Analysis. Front Cell Dev Biol 2021; 9:716871. [PMID: 34568330 PMCID: PMC8457400 DOI: 10.3389/fcell.2021.716871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
In response to pathological stimulation, methylation status conversion of the genome drives changes of cell feature and is able to promote disease development. Yet the role of methylation in the development of thyroid-associated ophthalmopathy (TAO) remains to be evaluated. Overexpansion of orbital tissue is the key feature of TAO. In this study, the methylation profile of orbital adipose/connective tissue from TAO patients and normal individuals were compared. After screening 3,739 differentially methylated probes, the distribution and properties of these probes were analyzed. Furthermore, enriched biological functions of these genes associated with differential methylation and the relationship between their methylation status and expression profile were also identified, including PTPRU and VCAM-1. According to our results, methylation was involved in disregulated immune response and inflammation in TAO and might contribute to activation of fibroblast and adipogenesis, leading to the expansion of orbital tissue. Neuropathy and neurobehavioral symptoms were also potentially associated with methylation. These results may help to extend the understanding of methylation in TAO and provide more insights into diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Yu Liang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Sijia Ding
- Department of Phase 1 Clinical Trial Unit, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiying Wang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chunchun Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yan Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuye Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Weiyi Xia
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Qinghe Jing
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuxiang Hu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
36
|
Men CJ, Kossler AL, Wester ST. Updates on the understanding and management of thyroid eye disease. Ther Adv Ophthalmol 2021; 13:25158414211027760. [PMID: 34263138 PMCID: PMC8252358 DOI: 10.1177/25158414211027760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Thyroid eye disease (TED) is a complex disease associated with myriad clinical presentations, including facial disfigurement, vision loss, and decreased quality of life. Traditionally, steroid therapy and/or radiation therapy were commonly used in the treatment of active TED. While these therapies can help reduce inflammation, they often do not have a sustainable, significant long-term effect on disease outcomes, including proptosis and diplopia. Recent advances in our understanding of the pathophysiology of TED have shifted the focus of treatment toward targeted biologic therapies. Biologics have the advantage of precise immune modulation, which can have better safety profiles and greater efficacy compared to traditional approaches. For instance, the insulin-like growth factor-1 receptor (IGF-1R) has been found to be upregulated in TED patients and to colocalize with the thyroid-stimulating hormone receptor (TSHR), forming a signaling complex. Teprotumumab is an antibody targeted against IGF-1R. By inhibiting the IGF-1R/TSHR signaling pathway, teprotumumab may reduce the production of proinflammatory cytokines, hyaluronan secretion, and orbital fibroblast activation in patients with TED. Due to promising phase II and III clinical trial results, teprotumumab has become the first biologic US Food and Drug Administration (FDA)-approved for the treatment of TED. In addition, there are currently ongoing studies looking at the use of antibodies targeting the neonatal Fc receptor (FcRn) in various autoimmune diseases, including TED. FcRn functions to transport immunoglobulin G (IgG) and prevent their lysosomal degradation. By blocking the recycling of IgG, this approach may dampen the body's immune response, in particular the pathogenic IgG implicated in some autoimmune diseases. Advances in our understanding of the pathophysiology of TED, therefore, are leading to more targeted therapeutic options, and we are entering an exciting new phase in the management of TED. This review will cover recent insights into the understanding of TED pathophysiology and novel treatment options as well as ongoing studies of new potential treatment options for TED.
Collapse
Affiliation(s)
- Clara J. Men
- Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Andrea L. Kossler
- Byers Eye Institute, School of Medicine, Stanford University, 2452 Watson Ct, Palo Alto, CA 94303, USA
- Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sara T. Wester
- Bascom Palmer Eye Institute, Department of Ophthalmology, McKnight Vision Research Center, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|