1
|
Lei L, Wu X, Liu X, Zhou H, Zhu J, El Jaouhari A, Liu X, Khan MZH. Three-dimensional ordered macro-microporous ZIF-8-α-Glu microreactors for α-glucosidase inhibitors screening from green tea. Talanta 2025; 287:127578. [PMID: 39824054 DOI: 10.1016/j.talanta.2025.127578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Due to the larger pore structure, the macroporous material can be used as the immobilized carrier to not only increase the enzyme loading capacity, but also facilitate the transfer of reactants and substrates. Based on this, a three-dimensional ordered macro-microporous ZIF-8 (SOM-ZIF-8) was prepared using three-dimensional ordered stacked polystyrene spheres as the hard template. The morphology and structure of SOM-ZIF-8 were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and so on. The macropore size of SOM-ZIF-8 was tested to be about 100 nm by N2 adsorption-desorption isotherms. Then α-glucosidase (α-Glu) was encapsulated into the macropore of SOM-ZIF-8 by physical adsorption method to prepare the immobilized enzyme microreactor. Under the optimal immobilization conditions, the loading capacity of SOM-ZIF-8 to α-Glu reached 113.42 μg/mg. Due to the encapsulation in the three-dimensional macropores, the conformational changes of the enzyme are restricted, endowing the immobilized enzyme with excellent acid and alkali resistance, a long storage time, and almost unchanged relative activity after 7 cycles. Finally, the SOM-ZIF-8-α-Glu microreactors combined with high performance liquid chromatography (HPLC) were applied to offline screen α-Glu inhibitory active components from tea extract. Several components including gallocatechin, catechin and epicatechin gallate were successfully screened out, which verified the application feasibility of the immobilized enzyme microreactor.
Collapse
Affiliation(s)
- Lijing Lei
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrong Wu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqi Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Haodong Zhou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Abdelhadi El Jaouhari
- Department of Materials Science, Energy, and Nano-Engineering (MSN), Mohammed VI Polytechnic University, Ben Guerir, 43150, Morocco
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Md Zaved H Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
2
|
Lange E, Pałkowska-Goździk E, Kęszycka P. The Influence of Various Types of Functional Bread on Postprandial Glycemia in Healthy Adults. APPLIED SCIENCES 2024; 14:11900. [DOI: 10.3390/app142411900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bread is a crucial component of a balanced diet. Increasing the choice of functional bakery products based on whole grain flours, with the addition of seeds and grains, can improve health, including reducing postprandial glycemia and the risk of metabolic syndrome. The current study attempted to characterize the relationship between the composition and nutritional value of 23 different types of functional bread and postprandial glycemic response values. This study involved 209 non-obese healthy volunteers aged between 18 and 50. The study protocol followed the standard glycemic index (GI) method outlined by the International Standard, ISO 26642:2010. Most of the examined bread had a low GI and was composed mainly of rye, oats, buckwheat flour with a sourdough starter, and oilseeds. Postprandial glycemia was negatively associated with the fat, protein, and fiber content of bread. However, the GI depended directly on the carbohydrate content and, inversely, on the fat content in wheat bread and bread containing oilseeds. Similarly, using whole-grain flour and sourdough in a functional bakery reduces the GI. Adding oilseeds and sourdough to bread also reduced blood glucose levels approximately one hour after a meal. A greater number of ingredients in a recipe may be associated with a higher GI. In designing a functional bread with a potentially beneficial effect on postprandial glycemia, the nutritional value, type of fermentation, and additives (type and number) are worth considering. The high variability in postprandial glycemia after bread consumption is related to several factors and requires GI determination according to standard methods to ensure that the information provided to the consumer is reliable.
Collapse
Affiliation(s)
- Ewa Lange
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159 C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Ewelina Pałkowska-Goździk
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159 C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Paulina Kęszycka
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159 C Nowoursynowska Street, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Grasset E, Briand F, Virgilio N, Schön C, Wilhelm M, Cudennec B, Ravallec R, Aboubacar H, Vleminckx S, Prawitt J, Sulpice T, Gevaert E. A Specific Collagen Hydrolysate Improves Postprandial Glucose Tolerance in Normoglycemic and Prediabetic Mice and in a First Proof of Concept Study in Healthy, Normoglycemic and Prediabetic Humans. Food Sci Nutr 2024; 12:9607-9620. [PMID: 39619994 PMCID: PMC11606891 DOI: 10.1002/fsn3.4538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 01/03/2025] Open
Abstract
In response to nutrients, intestinal L- and K-cells naturally secrete glucagon-like peptide 1 (GLP-1). GLP-1 regulates postprandial blood glucose by increasing insulin secretion, slowing down gastric emptying and inducing satiety. A selection of specifically developed collagen hydrolysates was screened for their ability to enhance natural GLP-1 production in vitro. The best performing hydrolysate, H80 (Nextida GC), was orally administered at different doses to lean, normoglycemic mice and overweight, prediabetic mice. Lean mice were acutely challenged 45 min before an oral glucose load. While daily supplemented for 6 weeks, prediabetic mice were acutely challenged at day 21 and 34. Oral glucose tolerance, plasma insulin and GLP-1 levels were assessed, and a gastric emptying assay performed in prediabetic mice. H80 significantly lowered the blood glucose response in lean and prediabetic mice, at a 4 g/kg dose (-25% and -36%, respectively), compared to vehicle. In chronically supplemented, prediabetic mice, acute H80 administration slowed down gastric emptying (-60%) after 21 days and increased plasma insulin (+166%) after 35 days of supplementation. H80 increased plasma active GLP-1 in lean (+217%) and prediabetic (+860%) mice. Overall, the data indicate that the specific collagen hydrolysate, H80, has significant GLP-1-mediated effects on oral glucose tolerance in lean and prediabetic mice. Furthermore, effects on postprandial glucose tolerance were evaluated in a small, human, proof of concept study. H80 reduced the postprandial glucose response at a 5 g dose in healthy, normoglycemic and prediabetic participants. Oral supplementation with H80 might thus be a promising strategy to maintain normal glucose tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Manfred Wilhelm
- Department of Mathematics, Natural and Economic SciencesUlm University of Applied SciencesUlmGermany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Vijh D, Gupta P. GC-MS analysis, molecular docking, and pharmacokinetic studies on Dalbergia sissoo barks extracts for compounds with anti-diabetic potential. Sci Rep 2024; 14:24936. [PMID: 39438536 PMCID: PMC11496555 DOI: 10.1038/s41598-024-75570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetes is a metabolic condition defined by abnormal blood sugar levels. Targeting starch-hydrolyzing enzymes and Dipeptidyl Peptidase 4 (DPP-4) expressed on the surface of numerous cells is one of the key strategies to lower the risk of Type-2 diabetes mellitus (T2DM). Dalbergia sissoo Roxb. bark (DSB) extracts have been reported to have anti-diabetic properties. This study intended to scientifically validate use of alcoholic and hydro-alcoholic extracts of DSB for T2DM by conducting preliminary phytochemical investigations, characterising potential phytochemicals using Fourier transform infrared (FT-IR) spectroscopy and Gas chromatography-mass spectrometry (GC-MS) analysis followed by comprehensive in-silico analysis. A qualitative phytochemical evaluation indicated the presence of alkaloids, phenolics, glycosides, conjugated acids and flavonoids. Ethanolic extracts showed highest total phenolic content (TPC) (127.072 ± 14.08031 μg GAE/g dry extract) and total flavonoid content (106.911 ± 5.84516 μg QE /g dry extract). Further FT-IR spectroscopy also revealed typical band values associated with phenol, alcohol, alkene, alkane and conjugated acid functional groups. The GC-MS analysis identified 139 compounds, 18 of which had anti-diabetic potential. In-silico ADMET analysis of potential compounds revealed 15 compounds that followed Lipinski's rule and demonstrated drug-like properties, as well as good oral bioavailability. Molecular docking was utilised to analyse their potential to interact with three targets: α-amylase, α-glucosidase, and DPP-4, which are crucial in managing diabetes-related problems. Molecular Docking analysis and membrane permeability test utilising the PerMM platform revealed that compounds in the extracts, such as Soyasapogenol B and Corydine, had better interactions and permeability across the plasma membrane than standard drugs in use. Molecular dynamics simulations also showed that selected compounds remained stable upon interaction with α-amylase. Overall, using the in-silico approaches it was predicted that DSB extracts contain potential phytochemicals with diverse anti-diabetic properties. It further needs to be investigated for possible development as formulation or drug of choice for treating T2DM.
Collapse
Affiliation(s)
- Deepanshi Vijh
- Agriculture Plant Biotechnology Laboratory (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India
| | - Promila Gupta
- Agriculture Plant Biotechnology Laboratory (ARL-316), University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India.
| |
Collapse
|
5
|
Moreira FD, Reis CEG, Gallassi AD, Moreira DC, Welker AF. Suppression of the postprandial hyperglycemia in patients with type 2 diabetes by a raw medicinal herb powder is weakened when consumed in ordinary hard gelatin capsules: A randomized crossover clinical trial. PLoS One 2024; 19:e0311501. [PMID: 39383145 PMCID: PMC11463819 DOI: 10.1371/journal.pone.0311501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Contradictory claims about the efficacy of several medicinal plants to promote glycemic control in patients with type 2 diabetes mellitus (T2DM) have been explained by divergences in the administration form and by extrapolation of data obtained from healthy individuals. It is not known whether the antidiabetic effects of traditional herbal medicines are influenced by gelatin capsules. This randomized crossover trial aimed to evaluate the acute effect of a single dose of raw cinnamon consumed orally either dissolved in water as a beverage or as ordinary hard gelatin capsules on postprandial hyperglycemia (>140 mg/dL; >7.8 mmol/L) in T2DM patients elicited by a nutritionally-balanced meal providing 50 g of complex carbohydrates. METHODS Fasting T2DM patients (n = 19) randomly ingested a standardized meal in five experimental sessions, one alone (Control) and the other after prior intake of 3 or 6 g of crude cinnamon in the form of hard gelatin capsules or powder dissolved in water. Blood glucose was measured at fasting and at 0.25, 0.5, 0.75, 1, 1.5 and 2 hours postprandially. After each breakfast, its palatability scores for visual appeal, smell and pleasantness of taste were assessed, as well as the taste intensity sweetness, saltiness, bitterness, sourness and creaminess. RESULTS The intake of raw cinnamon dissolved in water, independently of the dose, decreased the meal-induced large glucose spike (peak-rise of +87 mg/dL and Δ1-hour glycemia of +79 mg/dL) and the hyperglycemic blood glucose peak. When cinnamon was taken as capsules, these anti-hyperglycemic effects were lost or significantly diminished. Raw cinnamon intake did not change time-to-peak or the 2-h post-meal glycaemia, but flattened the glycemic curve (lower iAUC) without changing the shape that is typical of T2DM patients. CONCLUSIONS This cinnamon's antihyperglycemic action confirms its acarbose-like property to inhibit the activities of the carbohydrate-digesting enzymes α-amylases/α-glucosidases, which is in accordance with its exceptionally high content of raw insoluble fiber. The efficacy of using raw cinnamon as a diabetes treatment strategy seems to require its intake at a specific time before/concomitantly the main hyperglycemic daily meals. Trial registration: Registro Brasileiro de Ensaios Clínicos (ReBEC), number RBR-98tx28b.
Collapse
Affiliation(s)
- Fernanda Duarte Moreira
- Ministério da Saúde, Brasília, Brazil
- Secretaria de Estado de Saúde do Distrito Federal, Brasília, Brazil
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Andrea Donatti Gallassi
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| | | | - Alexis Fonseca Welker
- Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Tsaban G, Aharon-Hananel G, Shalem S, Zelicha H, Yaskolka Meir A, Pachter D, Goldberg DT, Kamer O, Alufer L, Stampfer MJ, Wang DD, Qi L, Blüher M, Stumvoll M, Hu FB, Shai I, Tirosh A. The effect of Mankai plant consumption on postprandial glycaemic response among patients with type 2 diabetes: A randomized crossover trial. Diabetes Obes Metab 2024; 26:4713-4723. [PMID: 39134456 DOI: 10.1111/dom.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
AIM To explore the effect of Mankai, a cultivated aquatic duckweed green plant, on postprandial glucose (PG) excursions in type 2 diabetes (T2D). METHODS In a 4-week, randomized crossover-controlled trial, we enrolled 45 adults with T2D (HbA1c range: 6.5%-8.5%) from two sites in Israel. Participants were randomized to drink Mankai (200 mL of raw-fresh-aquatic plant + 100 mL of water, 40 kcal, ~10 g of dry matter equivalent) or water (300 mL) following dinner, for 2 weeks each, with a 4-day washout interval, without dietary, physical activity or pharmacotherapy alterations. We used continuous glucose monitoring (CGM) devices. RESULTS Forty patients (adherence rate = 88.5%; 743 person-intervention-days, 68.9% men, age = 64 years, HbA1c = 6.8%) completed the study with a consistent diet and complete CGM reads. Only two-thirds of the individuals responded beneficially to Mankai. Overall, Mankai significantly lowered the PG peak by 19.3% (∆peak = 24.3 ± 16.8 vs. 30.1 ± 18.5 mg/dL; P < .001) and delayed the time-to-peak by 20.0% (112.5 [interquartile range: 75-135] vs. 90 [60-105] min; P < .001) compared with water. The PG incline and decline slopes were shallower following postdinner Mankai (incline slope: 16.8 vs. water: 29.9 mg/[dL h]; P < .001; decline slope: -6.1 vs. water: -7.9 mg/[dL h]; P < .01). Mean postprandial net incremental area-under-the-glucose-curve was lowered by 20.1% with Mankai compared with water (P = .03). Results were consistent across several sensitivity and subgroup analyses, including across antidiabetic pharmacotherapy treatment groups. Within 2 weeks, the triglycerides/high-density lipoprotein cholesterol ratio in the Mankai group (-0.5 ± 1.3) decreased versus water (+0.3 ± 1.5, P = .05). CONCLUSIONS Mankai consumption may mitigate the PG response in people with T2D with an ~20% improvement in glycaemic values. These findings provide case-study evidence for plant-based treatments in T2D to complement a healthy lifestyle and pharmacotherapy.
Collapse
Affiliation(s)
- Gal Tsaban
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
- Department of Cardiology, Soroka University Medical Centre, Beersheva, Israel
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Genya Aharon-Hananel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Centre, Ramat Gan, Israel
| | - Shiran Shalem
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Centre, Ramat Gan, Israel
| | - Hila Zelicha
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Anat Yaskolka Meir
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dafna Pachter
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Dana Tamar Goldberg
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Omer Kamer
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Liav Alufer
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Meir J Stampfer
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dong D Wang
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology and Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Centre Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | | | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Iris Shai
- The Health and Nutrition Innovative International Research Centre, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Amir Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Centre, Ramat Gan, Israel
| |
Collapse
|
7
|
Chamberlin ML, Wilson SM, Gaston ME, Kuo WY, Miles MP. Twelve Weeks of Daily Lentil Consumption Improves Fasting Cholesterol and Postprandial Glucose and Inflammatory Responses-A Randomized Clinical Trial. Nutrients 2024; 16:419. [PMID: 38337705 PMCID: PMC10857178 DOI: 10.3390/nu16030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Lentils have potential to improve metabolic health but there are limited randomized clinical trials evaluating their comprehensive impact on metabolism. The aim of this study was to assess the impact of lentil-based vs. meat-based meals on fasting and postprandial measures of glucose and lipid metabolism and inflammation. Thirty-eight adults with an increased waist circumference (male ≥ 40 inches and female ≥ 35 inches) participated in a 12-week dietary intervention that included seven prepared midday meals totaling either 980 g (LEN) or 0 g (CON) of cooked green lentils per week. Linear models were used to assess changes in fasting and postprandial markers from pre- to post-intervention by meal group. Gastrointestinal (GI) symptoms were assessed through a survey randomly delivered once per week during the intervention. We found that regular consumption of lentils lowered fasting LDL (F = 5.53, p = 0.02) and total cholesterol levels (F = 8.64, p < 0.01) as well as postprandial glucose (β = -0.99, p = 0.01), IL-17 (β = -0.68, p = 0.04), and IL-1β (β = -0.70, p = 0.03) responses. GI symptoms were not different by meal group and all symptoms were reported as "none" or "mild" for the duration of the intervention. Our results suggest that daily lentil consumption may be helpful in lowering cholesterol and postprandial glycemic and inflammatory responses without causing GI stress. This information further informs the development of pulse-based dietary strategies to lower disease risk and to slow or reverse metabolic disease progression in at-risk populations.
Collapse
Affiliation(s)
- Morgan L. Chamberlin
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| | - Stephanie M.G. Wilson
- United States Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA;
- Texas A&M, Institute for Advancing Health Through Agriculture, College Station, TX 77845, USA
| | - Marcy E. Gaston
- Department of Human Ecology, SUNY Oneonta, Oneonta, NY 13820, USA;
| | - Wan-Yuan Kuo
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| |
Collapse
|
8
|
Lee DPS, Gan AX, Sutanto CN, Toh KQX, Khoo CM, Kim JE. Postprandial glycemic and circulating SCFA concentrations following okara- and biovalorized okara-containing biscuit consumption in middle-aged and older adults: a crossover randomized controlled trial. Food Funct 2022; 13:9687-9699. [PMID: 36040444 DOI: 10.1039/d2fo00526c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Okara is a high-fiber food by-product that can be biotransformed with Rhizopus oligosporus to improve its nutritional value and palatability. This research aims to assess postprandial changes in glycemic-related and lipid-related outcomes in middle-aged and older Singaporeans following okara- and biovalorized okara-containing biscuit consumption. Fifteen participants (58 ± 6 years old, mean ± SD) completed the randomized crossover study. Participants were provided control (C), okara (AOK)-, and biovalorized okara (RO)-containing biscuits in separate 4 h mixed meal tolerance tests. Serum glucose and insulin, insulin indices, serum short-chain fatty acids (SCFA) and lipid-lipoprotein panels, and sensory analysis were assessed. Glucose-stimulated insulin secretion was significantly lower for RO than for C (p: 0.035) while log insulin incremental area under the curve (AUC) was significantly lower for AOK compared to that for C (p: 0.023). The estimated insulin sensitivity index and estimated metabolic clearance rate were significantly higher for AOK compared to that for C (p: 0.025 and 0.016 respectively). Normalized AUC for total SCFA was significantly higher for RO compared to that for C (p: 0.038). Normalized AUC for LDL-cholesterol was significantly higher for AOK than for C (p: 0.010). No significant difference was noted for glucose, total cholesterol, HDL-cholesterol, and triglyceride concentrations. RO had greater flavor and overall liking than AOK (p: 0.007 and 0.017 respectively). Biscuits incorporated with okara or biovalorized okara can attenuate postprandial insulin responses. RO offered a greater SCFA response than C, indicating improved SCFA concentrations upon consumption of okara improved with fermentation. The trial was registered under https://www.clinicaltrials.gov (NCT03978104, 25 May 2019).
Collapse
Affiliation(s)
- Delia Pei Shan Lee
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Science Drive 2, Singapore 117542.
| | - Alicia Xinli Gan
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Science Drive 2, Singapore 117542.
| | - Clarinda Nataria Sutanto
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Science Drive 2, Singapore 117542.
| | - Kate Qi Xuan Toh
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Science Drive 2, Singapore 117542.
| | - Chin Meng Khoo
- Division of Endocrinology, University Medicine Cluster, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074
| | - Jung Eun Kim
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Science Drive 2, Singapore 117542.
| |
Collapse
|
9
|
Pan J, Zhang Q, Zhang C, Yang W, Liu H, Lv Z, Liu J, Jiao Z. Inhibition of Dipeptidyl Peptidase-4 by Flavonoids: Structure–Activity Relationship, Kinetics and Interaction Mechanism. Front Nutr 2022; 9:892426. [PMID: 35634373 PMCID: PMC9134086 DOI: 10.3389/fnut.2022.892426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
With the aim to establish a structure-inhibitory activity relationship of flavonoids against dipeptidyl peptidase-4 (DPP-4) and elucidate the interaction mechanisms between them, a pannel of 70 structurally diverse flavonoids was used to evaluate their inhibitory activities against DPP-4, among which myricetin, hyperoside, narcissoside, cyanidin 3-O-glucoside, and isoliquiritigenin showed higher inhibitory activities in a concentration-dependent manner. Structure-activity relationship analysis revealed that introducing hydroxyl groups to C3', C4', and C6 of the flavonoid structure was beneficial to improving the inhibitory efficacy against DPP-4, whereas the hydroxylation at position 3 of ring C in the flavonoid structure was unfavorable for the inhibition. Besides, the methylation of the hydroxyl groups at C3', C4', and C7 of the flavonoid structure tended to lower the inhibitory activity against DPP-4, and the 2,3-double bond and 4-carbonyl group on ring C of the flavonoid structure was essential for the inhibition. Glycosylation affected the inhibitory activity diversely, depending on the structure of flavonoid aglycone, type of glycoside, as well as the position of substitution. Inhibition kinetic analysis suggested that myricetin reversibly inhibited DPP-4 in a non-competitive mode, whereas hyperoside, narcissoside, cyanidin 3-O-glucoside, and isoliquiritigenin all reversibly inhibited DPP-4 in a mixed type. Moreover, the fluorescence quenching analysis indicated that all the five flavonoid compounds could effectively quench the intrinsic fluorescence of DPP-4 by spontaneously binding with it to form an unstable complex. Hydrogen bonds and van der Waals were the predominant forces to maintain the complex of myricetin with DPP-4, and electrostatic forces might play an important role in stabilizing the complexes of the remaining four flavonoids with DPP-4. The binding of the tested flavonoids to DPP-4 could also induce the conformation change of DPP-4 and thus led to inhibition on the enzyme. Molecular docking simulation further ascertained the binding interactions between DPP-4 and the selected five flavonoids, among which hyperoside, narcissoside, cyaniding 3-O-glucoside, and isoliquiritigenin inserted into the active site cavity of DPP-4 and interacted with the key amino acid residues of the active site, whereas the binding site of myricetin was located in a minor cavity close to the active pockets of DPP-4.
Collapse
|
10
|
Lisco G, De Tullio A, Disoteo O, De Geronimo V, Piazzolla G, De Pergola G, Giagulli VA, Jirillo E, Guastamacchia E, Sabbà C, Triggiani V. Basal insulin intensification with GLP-1RA and dual GIP and GLP-1RA in patients with uncontrolled type 2 diabetes mellitus: A rapid review of randomized controlled trials and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:920541. [PMID: 36157450 PMCID: PMC9494570 DOI: 10.3389/fendo.2022.920541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Tirzepatide, a dual agonist of Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-Like Peptide 1 (GLP-1) receptors, improved glucose control and reduced body weight in different therapeutic approaches. Herein, we overviewed the role of GIP and GLP-1 in the pathophysiology of type 2 diabetes and systematically reviewed the efficacy and safety of injectable incretin-based therapy added to basal insulin in light of the results of the SURPASS-5 trial. We identified eleven randomized clinical trials. GLP-1 receptor agonists (GLP-1RAs) or Tirzepatide added to basal insulin than rigorously titrated basal insulin significantly ameliorates glucose control (Δ HbA1c = -1%, 95% CI -1.25; -0.74, I2 94%; Δ FPG = -14.6 mg/dL, 95% CI -21.6-; -7.6, I2 90%; chance to achieve HbA1c <7% = RR 2.62, 95% CI 2.10; 3.26, I2 89%), reduces body weight (Δ = -3.95 kg, 95% CI -5.1, -2.79, I2 96%) without increasing the risk of hypoglycemia (RR = 1.01, 95% CI 0.86; 1.18, I2 7.7%). Tirzepatide provides an impressive weight loss exceeding that observed with GLP-1RAs. Injectable incretin-based therapy plus basal insulin remains a potent and safe therapeutic approach in uncontrolled type 2 diabetes patients previously treated with basal insulin alone. Tirzepatide is expected to ameliorate the management of "diabesity" in this usually difficult-to-treat cluster of patients.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Bari, Italy
| | - Anna De Tullio
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Bari, Italy
| | - Olga Disoteo
- Diabetology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Bari, Italy
| | - Giovanni De Pergola
- National Institute of Gastroenterology, Saverio de Bellis, Research Hospital, Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari “Aldo Moro”, School of Medicine, Policlinico, Bari, Italy
- *Correspondence: Vincenzo Triggiani,
| |
Collapse
|