1
|
Feely S, Mullen N, Donlon PT, Reidy E, Challapalli RS, Hassany M, Sorushanova A, Martinez ER, Owens P, Quinn AM, Pandit A, Harhen B, Finn DP, Hantel C, O'Halloran M, Prakash P, Dennedy MC. Development and Characterization of 3-Dimensional Cell Culture Models of Adrenocortical Carcinoma. Endocrinology 2024; 166:bqae159. [PMID: 39656817 DOI: 10.1210/endocr/bqae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy of the adrenal cortex that is associated with a poor prognosis. Developing effective treatment options for ACC is challenging owing to the current lack of representative preclinical models. This study addressed this limitation by developing and characterizing 3-dimensional (3D) cell cultures incorporating the ACC cell lines, MUC-1, HAC15, and H295R in a type I collagen matrix. ACC tissue samples were analyzed by immunohistochemistry to determine the presence of type I collagen in the tumor microenvironment. Cell viability and proliferation were assessed using flow cytometry and confocal microscopy. mRNA expression of steroidogenic enzymes and steroid secretion was analyzed by comparing the 3D and monolayer cell culture models. All cells were successfully cultured in a type I collagen matrix, which is highly expressed in the ACC tumor microenvironment and showed optimal viability until day 7. All 3 models showed increased metabolic and proliferative activity over time. Three-dimensional cell cultures were steroidogenic and demonstrated increased resistance to the gold standard chemotherapy, mitotane, compared with monolayer. The use of these models may lead to an improved understanding of disease pathology and provide a better representative platform for testing and screening of potential therapies.
Collapse
Affiliation(s)
- Sarah Feely
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Nathan Mullen
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Padraig T Donlon
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Ritihaas Surya Challapalli
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Mariam Hassany
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Anna Sorushanova
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
| | - Eduardo Ribes Martinez
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| | - Peter Owens
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, University of Galway, Galway, H91 TK33, Ireland
| | - Anne Marie Quinn
- Department of Anatomic Pathology, Galway University Hospital, Galway, H91 YR71, Ireland
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| | - Brendan Harhen
- Biological Mass Spectrometry Core Facility, University of Galway, Galway, H91 TK33, Ireland
| | - David P Finn
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Martin O'Halloran
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
- Translational Medical Device Laboratory, University of Galway, Galway, H91 V4AY, Ireland
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Michael C Dennedy
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland
- Science Foundation Ireland (SFI) Research Centre for Research in Medical Devices (CURAM), Biomedical Science Building, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
2
|
Ning L, Tian Y, Chen D, Han J, Xie G, Sun J. Sorafenib safety evaluation: Real-world analysis of adverse events from the FAERS database. Heliyon 2024; 10:e37348. [PMID: 39309940 PMCID: PMC11416516 DOI: 10.1016/j.heliyon.2024.e37348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Sorafenib is approved for the targeted therapy of cancers such as liver cancer and renal cancer. Given its widespread use, drug-related adverse events have received attention, and the post-marketing regulatory link is crucial. Objective By using the FAERS database to mine the adverse events (AEs) related to sorafenib, comparing the association intensity of key AEs, and exploring potential drug-related AEs, it provides a reference for clinical medication. Methods Collect ADE data related to sorafenib in the FAERS database from 2006 to 2023. Standardize the data, and map adverse events to system organ classes and preferred terms. Analyze using various signal quantification techniques such as ROR, PRR, BCPNN, and MGPS. Results Among 18,520 adverse event reports (AERs) where sorafenib was the primary suspected drug, a total of 390 preferred terms (PTs) of adverse reactions were identified, covering 24 different system organ classes (SOCs). Specifically, the adverse events of sorafenib mainly involve the digestive system, skin and subcutaneous tissue, as well as non-specific physical discomfort including infection and injury. Among them, digestive system symptoms and skin toxicity are typical adverse reactions of sorafenib. We also observed uncommon but clearly strong AE signals, such as chloracne (n = 3, ROR 1756.39, PRR 1756.32, IC 8.78, EBGM 439.83), low-differentiated thyroid cancer (n = 4, ROR 585.47, PRR 585.44, IC 8.2, EBGM 293.22). It is worth noting that palmar-plantar erythrodysaesthesia syndrome (n = 2109, ROR 73.98, PRR 72.03, IC 6.01, EBGM 64.25) and hepatic encephalopathy (n = 457, ROR 37.44, PRR 37.23, IC 5.13, EBGM 35.07) have a higher incidence and signal intensity. In addition, we also observed some adverse events not mentioned in the official drug instructions, such as vitamin K deficiency or increased protein induced by antagonist II (PIVKA-II), abnormal alpha-fetoprotein, tumor metastasis, and splenic atrophy. Conclusion Sorafenib carries the risk of various adverse reactions while providing therapeutic effects. In clinical applications, physicians should closely monitor the occurrence of digestive system reactions, skin lesions, endocrine system lesions, as well as injuries, infections, and other events.
Collapse
Affiliation(s)
- Lin Ning
- Department of Traditional Chinese Medicine, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Tian
- Department of Traditional Chinese Medicine, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jie Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Guanyue Xie
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jianguang Sun
- Department of Traditional Chinese Medicine, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Elleithi Y, El-Gayar A, Amin MN. Autophagy modulation attenuates sorafenib resistance in HCC induced in rats. Cell Death Dis 2024; 15:595. [PMID: 39152108 PMCID: PMC11329791 DOI: 10.1038/s41419-024-06955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) has risen as the villain of cancer-related death globally, with a usual cruel forecasting. Sorafenib was officially approved by the FDA as first-line treatment for advanced HCC. Despite the brilliant promise revealed in research, actual clinical results are limited due to the widespread appearance of drug resistance. The tumor microenvironment (TME) has been correlated to pharmacological resistance, implying that existing cellular level strategies may be insufficient to improve therapy success. The role of autophagy in cancer is a two-edged sword. On one hand, autophagy permits malignant cells to overcome stress, such as hypoxic TME and therapy-induced starvation. Autophagy, on the other hand, plays an important role in damage suppression, which can reduce carcinogenesis. As a result, controlling autophagy is certainly a viable technique in cancer therapy. The goal of this study was to investigate at the impact of autophagy manipulation with sorafenib therapy by analyzing autophagy induction and inhibition to sorafenib monotherapy in rats with HCC. Western blot, ELISA, immunohistochemistry, flow cytometry, and quantitative-PCR were used to investigate autophagy, apoptosis, and the cell cycle. Routine biochemical and pathological testing was performed. Ultracellular features and autophagic entities were observed using a transmission electron microscope (TEM). Both regimens demonstrated significant reductions in chemotherapeutic resistance and hepatoprotective effects. According to the findings, both autophagic inhibitors and inducers are attractive candidates for combating sorafenib-induced resistance in HCC.
Collapse
Affiliation(s)
- Yomna Elleithi
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| | - Amal El-Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed N Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Martinelli S, Cantini G, Propato AP, Bani D, Guasti D, Nardini P, Calosi L, Mello T, Bechmann N, Danza G, Villanelli F, Canu L, Maggi M, Mannelli M, Rapizzi E, Luconi M. The 3D in vitro Adrenoid cell model recapitulates the complexity of the adrenal gland. Sci Rep 2024; 14:8044. [PMID: 38580769 PMCID: PMC10997590 DOI: 10.1038/s41598-024-58664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
The crosstalk between the chromaffin and adrenocortical cells is essential for the endocrine activity of the adrenal glands. This interaction is also likely important for tumorigenesis and progression of adrenocortical cancer and pheochromocytoma. We developed a unique in vitro 3D model of the whole adrenal gland called Adrenoid consisting in adrenocortical carcinoma H295R and pheochromocytoma MTT cell lines. Adrenoids showed a round compact morphology with a growth rate significantly higher compared to MTT-spheroids. Confocal analysis of differential fluorescence staining of H295R and MTT cells demonstrated that H295R organized into small clusters inside Adrenoids dispersed in a core of MTT cells. Transmission electron microscopy confirmed the strict cell-cell interaction occurring between H295R and MTT cells in Adrenoids, which displayed ultrastructural features of more functional cells compared to the single cell type monolayer cultures. Adrenoid maintenance of the dual endocrine activity was demonstrated by the expression not only of cortical and chromaffin markers (steroidogenic factor 1, and chromogranin) but also by protein detection of the main enzymes involved in steroidogenesis (steroidogenic acute regulatory protein, and CYP11B1) and in catecholamine production (tyrosine hydroxylase and phenylethanolamine N-methyltransferase). Mass spectrometry detection of steroid hormones and liquid chromatography measurement of catecholamines confirmed Adrenoid functional activity. In conclusion, Adrenoids represent an innovative in vitro 3D-model that mimics the spatial and functional complexity of the adrenal gland, thus being a useful tool to investigate the crosstalk between the two endocrine components in the pathophysiology of this endocrine organ.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy.
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy.
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy.
| | - Giulia Cantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Arianna Pia Propato
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Laura Calosi
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, 50139, Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Giovanna Danza
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Fabio Villanelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
| | - Elena Rapizzi
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50139, Florence, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139, Florence, Italy.
- European Network for the Study of Adrenal Tumors (ENS@T) Center of Excellence, 50139, Florence, Italy.
- Centro Di Ricerca E Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50139, Florence, Italy.
| |
Collapse
|
5
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
6
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
7
|
Duranova H, Fialkova V, Simora V, Bilcikova J, Massanyi P, Lukac N, Knazicka Z. Impacts of iron on ultrastructural features of NCI-H295R cell line related to steroidogenesis. Acta Histochem 2023; 125:152056. [PMID: 37321134 DOI: 10.1016/j.acthis.2023.152056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
The current study was intended to evaluate impacts of both iron (Fe) enrichment and overload (in the form of ferrous sulphate heptahydrate, FeSO4.7H2O) on ultrastructural characteristics of human adrenocarcinoma NCI-H295R cell line. Here, the NCI-H295R cells were treated with 0, 3.90, and 1000 µM FeSO4.7H2O, and consequently proceeded for purposes of ultrastructural studies. Micrographs taken under transmission electron microscope (TEM) were investigated from the qualitative and quantitative (unbiased stereological approaches) aspects, and obtained findings were compared among the three groups of the cells. The ultrastructural features related to the steroidogenic process were found to be similar between the untreated and both Fe-exposed cell populations, with conspicuous mitochondria with well-defined lamellar cristae (creating clusters of varying sizes in the regions of increased energy demands) and concentric whorls of smooth endoplasmic reticulum (SER) being the most noticeable characteristics. The precise estimates of the component (volume, surface) fractions of the nucleus, mitochondria, and lipid droplets (LDs), as well as of the nucleus/cytoplasm (N/C) ratio have revealed close similarities (P > 0.05) in all cell groups investigated. Nonetheless, the low concentration of FeSO4.7H2O exhibited beneficial action on ultrastructural organization of the NCI-H295R cells. In effect, these cells were distinguished by mitochondria with smoother surfaces and clearer outlines, higher density of thin, parallel lamellar cristae (deeply extending into the mitochondrial matrix), and more widespread distribution of fine SER tubules as compared to the control ones, all of them suggesting higher level of energy requirements and metabolic activity, and more intensive rate of steroidogenesis. Interestingly, no obvious ultrastructural modifications were observed in the NCI-H295R cells treated with high FeSO4.7H2O concentration. This finding can be linked to either an adaptive ultrastructural machinery of these cells to cope with the adverse effect of the element or to insufficient dose of FeSO4.7H2O (1000 µM) to induce ultrastructural signs of cytotoxicity. Purposefully, the results of the current study complement our previous paper dealing with impacts of FeSO4.7H2O on the NCI-H295R cell viability and steroidogenesis at the molecular level. Hence, they fill a knowledge gap considering structure-function coupling in this cellular model system upon the metal exposure. This integrated approach can enhance our understanding of the cellular responses to Fe enrichment and overload which can be helpful for individuals with reproductive health concerns.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
8
|
Sedlack AJH, Hatfield SJ, Kumar S, Arakawa Y, Roper N, Sun NY, Nilubol N, Kiseljak-Vassiliades K, Hoang CD, Bergsland EK, Hernandez JM, Pommier Y, del Rivero J. Preclinical Models of Adrenocortical Cancer. Cancers (Basel) 2023; 15:2873. [PMID: 37296836 PMCID: PMC10251941 DOI: 10.3390/cancers15112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Adrenocortical cancer is an aggressive endocrine malignancy with an incidence of 0.72 to 1.02 per million people/year, and a very poor prognosis with a five-year survival rate of 22%. As an orphan disease, clinical data are scarce, meaning that drug development and mechanistic research depend especially on preclinical models. While a single human ACC cell line was available for the last three decades, over the last five years, many new in vitro and in vivo preclinical models have been generated. Herein, we review both in vitro (cell lines, spheroids, and organoids) and in vivo (xenograft and genetically engineered mouse) models. Striking leaps have been made in terms of the preclinical models of ACC, and there are now several modern models available publicly and in repositories for research in this area.
Collapse
Affiliation(s)
- Andrew J. H. Sedlack
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samual J. Hatfield
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nai-Yun Sun
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80016, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Emily K. Bergsland
- University of California, San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | | | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jaydira del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Cremaschi V, Abate A, Cosentini D, Grisanti S, Rossini E, Laganà M, Tamburello M, Turla A, Sigala S, Berruti A. Advances in adrenocortical carcinoma pharmacotherapy: what is the current state of the art? Expert Opin Pharmacother 2022; 23:1413-1424. [PMID: 35876101 DOI: 10.1080/14656566.2022.2106128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Surgery, followed or not by adjuvant mitotane, is the current mainstay of therapy for patients with early-stage adrenocortical carcinoma (ACC). Mitotane, either alone or in association with EDP (Etoposide-Doxorubicin-Cisplatin) combination chemotherapy, is the standard approach for patients with metastatic ACC. AREAS COVERED The activity of newer cytotoxic drugs, radioligands, targeted therapies and immunotherapy, both in preclinical and in clinical studies, will be reviewed in this paper. EXPERT OPINION ADIUVO trial revealed that the administration of adjuvant mitotane is not advantageous in patients with good prognosis. Future strategies are to intensify efforts in adjuvant setting in patients with high risk of relapse. In patients with advanced/metastatic disease, modern targeted therapies have shown significant cytotoxicity in preclinical studies, however, studies in ACC patients reported disappointing results so far. The absence of targeted agents specifically inhibiting the major molecular pathways of ACC growth is the main cause of the failure of these drugs. Since ACC is often antigenic but poorly immunogenic, the results of immunotherapy trials appeared inferior to those achieved in the management of patients with other malignancies. Radioligand therapy may also be a promising approach. Combination of chemotherapy plus immunotherapy could be interesting to be tested in the future.
Collapse
Affiliation(s)
- Valentina Cremaschi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Antonella Turla
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
10
|
Duranova H, Fialkova V, Valkova V, Bilcikova J, Olexikova L, Lukac N, Massanyi P, Knazicka Z. Human adrenocortical carcinoma cell line (NCI-H295R): An in vitro screening model for the assessment of endocrine disruptors' actions on steroidogenesis with an emphasis on cell ultrastructural features. Acta Histochem 2022; 124:151912. [PMID: 35661985 DOI: 10.1016/j.acthis.2022.151912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Cell lines as an in vitro model for xenobiotic screening and toxicity studies provide a very important tool in the field of scientific research at the level of molecular pathways and gene expression. Good cell culture practice and intracellular characterization, as well as physiological properties of the cell line are of critical importance for in vitro reproductive toxicity testing of various endocrine-disrupting chemicals. The NCI-H295R, human adrenocarcinoma cell line, is the most widely used in vitro cellular system to study the human adrenal steroidogenic pathway at the level of hormone production and gene expression, as it expresses genes that encode for all the key enzymes for steroidogenesis. In this review, we aim to highlight the information considering the origin, development, physiological and ultrastructural characteristics of the NCI-H295R cell line. The review also creates a broad overview of the cell line usage in various range of studies related to the steroidogenesis issues. To our best knowledge, the paper provides the first report of quantitative data (ex novo) from stereological estimates of component (volume, surface) densities of nuclei, mitochondria, and lipid droplets of the NCI-H295R cells. Such ultrastructural measurements can be valuable in the assessment of underlying mechanisms of changes in the cell steroid hormone production induced by the action of diverse endocrine disruptors. Thus, they can significantly contribute to complexity of structure-function relationships in association with steroidogenesis.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jana Bilcikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Lucia Olexikova
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic.
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
11
|
Targeted Therapy for Adrenocortical Carcinoma: A Genomic-Based Search for Available and Emerging Options. Cancers (Basel) 2022; 14:cancers14112721. [PMID: 35681700 PMCID: PMC9179357 DOI: 10.3390/cancers14112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/07/2022] Open
Abstract
In rare diseases such as adrenocortical carcinoma (ACC), in silico analysis can help select promising therapy options. We screened all drugs approved by the FDA and those in current clinical studies to identify drugs that target genomic alterations, also known to be present in patients with ACC. We identified FDA-approved drugs in the My Cancer Genome and National Cancer Institute databases and identified genetic alterations that could predict drug response. In total, 155 FDA-approved drugs and 905 drugs in clinical trials were identified and linked to 375 genes of 89 TCGA patients. The most frequent potentially targetable genetic alterations included TP53 (20%), BRD9 (13%), TERT (13%), CTNNB1 (13%), CDK4 (7%), FLT4 (7%), and MDM2 (7%). We identified TP53-modulating drugs to be possibly effective in 20-26% of patients, followed by the Wnt signaling pathway inhibitors (15%), Telomelysin and INO5401 (13%), FHD-609 (13%), etc. According to our data, 67% of ACC patients exhibited genomic alterations that might be targeted by FDA-approved drugs or drugs being tested in current clinical trials. Although there are not many current therapy options directly targeting reported ACC alterations, this study identifies emerging options that could be tested in clinical trials.
Collapse
|