1
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
2
|
Jiang X, Yang W, Liu G, Tang H, Zhang R, Zhang L, Li C, Li S. VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway. Neurochem Int 2024; 183:105918. [PMID: 39681141 DOI: 10.1016/j.neuint.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Stroke is the second leading cause of death worldwide. Although conventional treatments such as thrombolysis and mechanical thrombectomy are effective, their narrow therapeutic window limits long-term neurological recovery. Previous studies have shown that vagus nerve stimulation (VNS) enhances neurological recovery after ischemia/reperfusion (I/R) injury, and neuromedin U (NMU) has neuroprotective effects. This study used a mouse model of cerebral I/R injury to investigate the potential mechanisms of NMU in VNS-mediated neurological improvement. The study consisted of two parts: first, assessing the dynamic expression of NMU and NMUR2, which peaked on day 14 post-I/R. NMUR2 was primarily localized in astrocytes, suggesting that the NMU-NMUR2 signaling pathway plays an important role in astrocyte regulation. Next, interventions with VNS, NMU, and R-PSOP + VNS were conducted to evaluate the role of this pathway in VNS-mediated recovery. The results showed that VNS significantly upregulated NMU and NMUR2 expression, which was blocked by the NMUR2 antagonist R-PSOP. VNS and NMU treatment increased the proportion of A2 astrocytes, reduced A1 astrocytes, and enhanced the expression of VEGF and BDNF, all of which were also blocked by R-PSOP. These findings indicate that the "VNS-NMU-NMUR2-astrocyte A1/A2 polarization-VEGF/BDNF pathway" plays a crucial role in promoting neurovascular remodeling, axonal and dendritic regeneration, and synaptic plasticity, thereby contributing to functional recovery.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Wendi Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Renzi Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lina Zhang
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Sheng Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Medrano M, Allaoui W, Haddad RES, Makrini-Maleville L, Valjent E, Smolders I, Kormos V, Gaszner B, De Bundel D. Neuromedin U Neurons in the Edinger-Westphal Nucleus Respond to Alcohol Without Interfering with the Urocortin 1 Response. Neurochem Res 2024; 49:3277-3296. [PMID: 39266897 PMCID: PMC11502588 DOI: 10.1007/s11064-024-04238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
The Edinger-Westphal nucleus (EW) is a midbrain nucleus composed of a preganglionic, cholinergic subpopulation and a densely clustered peptidergic subpopulation (EWcp). The EWcp is one of the few brain regions that show consistent induction of FOS following voluntary alcohol intake. Previous results in rodents point to urocortin 1 (UCN1) as one of the peptides most involved in the control of ethanol intake and preference. Notably, the functions described for UCN1, such as reward processing, stress coping or the regulation of feeding behavior are similar to those described for the neuropeptide neuromedin U (NMU). Interestingly, NMU has been recently associated with the modulation of alcohol-related behaviors. However, little is known about the expression and functionality of NMU neurons in alcohol-responsive areas. In this study, we used the recently developed Nmu-Cre knock-in mouse model to examine the expression of NMU in the subaqueductal paramedian zone comprising the EWcp. We delved into the characterization and co-expression of NMU with other markers already described in the EWcp. Moreover, using FOS as a marker of neuronal activity, we tested whether NMU neurons were sensitive to acute alcohol administration. Overall, we provided novel insights on NMU expression and functionality in the EW region. We showed the presence of NMU within a subpopulation of UCN1 neurons in the EWcp and demonstrated that this partial co-expression does not interfere with the responsivity of UCN1-containing cells to alcohol. Moreover, we proposed that the UCN1 content in these neurons may be influenced by sex.
Collapse
Affiliation(s)
- Mireia Medrano
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Wissal Allaoui
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Ra'fat Ehab Salim Haddad
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | | | - Emmanuel Valjent
- IGF, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Viktória Kormos
- Medical School, Department of Pharmacology and Pharmacotherapy, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - Balázs Gaszner
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary.
| | - Dimitri De Bundel
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
4
|
Zhou Y, Zhang X, Gao Y, Peng Y, Liu P, Chen Y, Guo C, Deng G, Ouyang Y, Zhang Y, Han Y, Cai C, Shen H, Gao L, Zeng S. Neuromedin U receptor 1 deletion leads to impaired immunotherapy response and high malignancy in colorectal cancer. iScience 2024; 27:110318. [PMID: 39055918 PMCID: PMC11269305 DOI: 10.1016/j.isci.2024.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) exhibits significant heterogeneity, impacting immunotherapy efficacy, particularly in immune desert subtypes. Neuromedin U receptor 1 (NMUR1) has been reported to perform a vital function in immunity and inflammation. Through comprehensive multi-omics analyses, we have systematically characterized NMUR1 across various tumors, assessing expression patterns, genetic alterations, prognostic significance, immune infiltration, and pathway associations at both the bulk sequencing and single-cell scales. Our findings demonstrate a positive correlation between NMUR1 and CD8+ T cell infiltration, with elevated NMUR1 levels in CD8+ T cells linked to improved immunotherapy outcomes in patients with CRC. Further, we have validated the NMUR1 expression signature in CRC cell lines and patient-derived tissues, revealing its interaction with key immune checkpoints, including lymphocyte activation gene 3 and cytotoxic T-lymphocyte-associated protein 4. Additionally, NMUR1 suppression enhances CRC cell proliferation and invasiveness. Our integrated analyses and experiments open new avenues for personalized immunotherapy strategies in CRC treatment.
Collapse
Affiliation(s)
- Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiangyang Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Cao Guo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Yanhong Ouyang
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China
| | - Yan Zhang
- Department of Oncology, Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan 414000, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Le Gao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
5
|
Cao J, Jiang W, Yin Z, Li N, Tong C, Qi H. Mechanistic study of pre-eclampsia and macrophage-associated molecular networks: bioinformatics insights from multiple datasets. Front Genet 2024; 15:1376971. [PMID: 38846957 PMCID: PMC11153808 DOI: 10.3389/fgene.2024.1376971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Background Pre-eclampsia is a pregnancy-related disorder characterized by hypertension and proteinuria, severely affecting the health and quality of life of patients. However, the molecular mechanism of macrophages in pre-eclampsia is not well understood. Methods In this study, the key biomarkers during the development of pre-eclampsia were identified using bioinformatics analysis. The GSE75010 and GSE74341 datasets from the GEO database were obtained and merged for differential analysis. A weighted gene co-expression network analysis (WGCNA) was constructed based on macrophage content, and machine learning methods were employed to identify key genes. Immunoinfiltration analysis completed by the CIBERSORT method, R package "ClusterProfiler" to explore functional enrichment of these intersection genes, and potential drug predictions were conducted using the CMap database. Lastly, independent analysis of protein levels, localization, and quantitative analysis was performed on placental tissues collected from both preeclampsia patients and healthy control groups. Results We identified 70 differentially expressed NETs genes and found 367 macrophage-related genes through WGCNA analysis. Machine learning identified three key genes: FNBP1L, NMUR1, and PP14571. These three key genes were significantly associated with immune cell content and enriched in multiple signaling pathways. Specifically, these genes were upregulated in PE patients. These findings establish the expression patterns of three key genes associated with M2 macrophage infiltration, providing potential targets for understanding the pathogenesis and treatment of PE. Additionally, CMap results suggested four potential drugs, including Ttnpb, Doxorubicin, Tyrphostin AG 825, and Tanespimycin, which may have the potential to reverse pre-eclampsia. Conclusion Studying the expression levels of three key genes in pre-eclampsia provides valuable insights into the prevention and treatment of this condition. We propose that these genes play a crucial role in regulating the maternal-fetal immune microenvironment in PE patients, and the pathways associated with these genes offer potential avenues for exploring the molecular mechanisms underlying preeclampsia and identifying therapeutic targets. Additionally, by utilizing the Connectivity Map database, we identified drug targets like Ttnpb, Doxorubicin, Tyrphostin AG 825, and Tanespimycin as potential clinical treatments for preeclampsia.
Collapse
Affiliation(s)
- Jinfeng Cao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wenxin Jiang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Zhe Yin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Na Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhao W, An Y, Cheng F, Zhao C. Expression of NMU and NMUR1 in tryptase-positive mast cells and PBLs in allergic rhinitis patients' nasal mucosa. Am J Rhinol Allergy 2024; 38:146-152. [PMID: 38378005 DOI: 10.1177/19458924241228764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
BACKGROUND The neuropeptide U (NMU) has been proven to elicit the release of mediators from mast cells (MCs) through its receptor NMUR1 in allergic inflammatory models. However, little is known about the correlations between NMU and MCs in human allergic rhinitis (AR). OBJECTIVE The objective of this study is to investigate the expressions of NMU and NMUR1 in the tryptase + MCs and the peripheral blood leukocytes (PBLs) in human nasal mucosa with AR. METHODS Specimens of nasal mucosa from patients with AR (n = 10) and control patients without AR (n = 8) were collected and soaked in frozen tissue liquid solution (OCT) in tum. Cryostat sections were prepared for immunofluorescence staining. Tryptase was used as a marker to detect mast cells and other tryptase + immune cells. The expression of NMU and NMUR1 was respectively determined by double staining using a confocal microscope. RESULTS Neither NMU nor NMUR1 were detected in the tryptase + mast cells in the human nasal mucosa. To our surprise, both NMU and NMUR1 were co-expressed with tryptase in the PBLs within peripheral blood vessels in AR and controls. CONCLUSION Our findings showed that NMU could not influence human nasal tryptase + mast cells directly through NMUR1 in AR. The co-expression of both NMU and NMUR1 with tryptase in the PBLs provided new insight into the potential roles of NMU and tryptase in the circulation PBLs, and the infiltrated PBLs may promote nasal allergic inflammation by producing tryptase and NMU.
Collapse
Affiliation(s)
- Wei Zhao
- Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Yunfang An
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Fengli Cheng
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Changqing Zhao
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| |
Collapse
|
7
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Keskin M, Avul S, Beyaz A, Koca N. The association of Neuromedin U levels and non-alcoholic fatty liver disease: A comparative analysis. Heliyon 2024; 10:e27291. [PMID: 38486771 PMCID: PMC10937677 DOI: 10.1016/j.heliyon.2024.e27291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
This comprehensive study delves into the potential link between Neuromedin U (NmU) serum levels and the development of non-alcoholic fatty liver disease (NAFLD), a condition of increasing global prevalence and significant public health concern. The research provides a nuanced understanding of the disease's etiology by examining a cohort of 112 participants, including individuals with and without NAFLD. The study meticulously considers a spectrum of variables such as demographic factors, body composition metrics, and blood parameters. Advanced diagnostic tools like Fibroscan® are employed to ascertain NAFLD presence, ensuring accurate and reliable results. The investigation reveals a noteworthy correlation between NAFLD and several risk factors, notably obesity, increased waist and neck circumferences, hypertriglyceridemia, and insulin resistance. These findings underscore the multifactorial nature of NAFLD and its intricate connection with metabolic syndromes. Intriguingly, the study observes lower NmU levels in individuals diagnosed with NAFLD. However, the role of NmU as an independent risk factor for NAFLD remains inconclusive, warranting further investigation. Although triglyceride level was observed to be an independent risk factor for NAFLD, this relationship was not associated with NmU. This research contributes significantly to the existing knowledge on NAFLD, highlighting the disease's complexity and the interplay of various risk factors. It also opens up new avenues for future research, particularly in exploring the role of NmU within the metabolic pathways associated with NAFLD. The insights gained from this study could guide the development of novel diagnostic and therapeutic strategies for NAFLD, addressing a crucial need in contemporary healthcare. In conclusion, the findings of this study not only enhance the understanding of NAFLD's pathophysiology but also emphasize the importance of comprehensive risk factor analysis in the management and prevention of this growing health concern.
Collapse
Affiliation(s)
- Murat Keskin
- Department of Gastroenterology, Medicana Private Hospital, Bursa, Turkey
| | - Sercan Avul
- Department of Internal Medicine, Birecik State Hospital, Şanlıurfa, Turkey
| | - Aylin Beyaz
- Department of Biochemistry, Kagizman State Hospital, Kars, Turkey
| | - Nizameddin Koca
- Department of Internal Medicine, University of Health Sciences, Bursa Faculty of Medicine, Bursa City Training & Research Hospital, Bursa, Turkey
| |
Collapse
|
9
|
Jászberényi M, Thurzó B, Bagosi Z, Vécsei L, Tanaka M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024; 12:448. [PMID: 38398050 PMCID: PMC10886661 DOI: 10.3390/biomedicines12020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The orexin/hypocretin neuropeptide family has emerged as a focal point of neuroscientific research following the discovery that this family plays a crucial role in a variety of physiological and behavioral processes. These neuropeptides serve as powerful neuromodulators, intricately shaping autonomic, endocrine, and behavioral responses across species. Notably, they serve as master regulators of vigilance and stress responses; however, their roles in food intake, metabolism, and thermoregulation appear complementary and warrant further investigation. This narrative review provides a journey through the evolution of our understanding of the orexin system, from its initial discovery to the promising progress made in developing orexin derivatives. It goes beyond conventional boundaries, striving to synthesize the multifaceted activities of orexins. Special emphasis is placed on domains such as stress response, fear, anxiety, and learning, in which the authors have contributed to the literature with original publications. This paper also overviews the advancement of orexin pharmacology, which has already yielded some promising successes, particularly in the treatment of sleep disorders.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, H-6725 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, H-6701 Szeged, Hungary; (M.J.); (B.T.); (Z.B.)
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
10
|
Wang M, Wang L, Xu W, Chu Z, Wang H, Lu J, Xue Z, Wang Y. NeuroPep 2.0: An Updated Database Dedicated to Neuropeptide and Its Receptor Annotations. J Mol Biol 2024; 436:168416. [PMID: 38143020 DOI: 10.1016/j.jmb.2023.168416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Neuropeptides not only work through nervous system but some of them also work peripherally to regulate numerous physiological processes. They are important in regulation of numerous physiological processes including growth, reproduction, social behavior, inflammation, fluid homeostasis, cardiovascular function, and energy homeostasis. The various roles of neuropeptides make them promising candidates for prospective therapeutics of different diseases. Currently, NeuroPep has been updated to version 2.0, it now holds 11,417 unique neuropeptide entries, which is nearly double of the first version of NeuroPep. When available, we collected information about the receptor for each neuropeptide entry and predicted the 3D structures of those neuropeptides without known experimental structure using AlphaFold2 or APPTEST according to the peptide sequence length. In addition, DeepNeuropePred and NeuroPred-PLM, two neuropeptide prediction tools developed by us recently, were also integrated into NeuroPep 2.0 to help to facilitate the identification of new neuropeptides. NeuroPep 2.0 is freely accessible at https://isyslab.info/NeuroPepV2/.
Collapse
Affiliation(s)
- Mingxia Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Lei Wang
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Xu
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ziqiang Chu
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hengzhi Wang
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingxiang Lu
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Zhidong Xue
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China; School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China; School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
11
|
Zheng R, Wang S, Wang J, Zhou M, Shi Q, Liu B. Neuromedin U regulates the anti-tumor activity of CD8 + T cells and glycolysis of tumor cells in the tumor microenvironment of pancreatic ductal adenocarcinoma in an NMUR1-dependent manner. Cancer Sci 2024; 115:334-346. [PMID: 38071753 PMCID: PMC10859610 DOI: 10.1111/cas.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis, which is lethal in approximately 90% of cases despite advanced standard therapies. A typical feature of PDAC is the immunosuppressive tumor microenvironment with multiple immunosuppressive factors including neurotransmitters. Recently, neuromedin U (NMU), a highly conserved neuropeptide with many physiological functions, has attracted attention for its roles in tumorigenesis and metastasis in several types of cancers. However, whether NMU affects PDAC progression remains unclear. In this study, using an orthotopic mouse model of PDAC in combination with bioinformatics analysis, we found that NMU was upregulated in tumor tissues from the patients with PDAC and positively correlated with a poor prognosis of the disease. Interestingly, knockout of the Nmu gene in mice enhanced the anti-tumor functions of tumor-infiltrating CD8+ T cells in an NMU receptor 1-dependent manner. Additionally, NMU promoted the glycolytic metabolism of mouse PDAC tumors. The activities of pyruvate kinase (PK) and lactate dehydrogenase (LDH), pivotal enzymes involved in the regulation of lactate production, were markedly reduced in tumor tissues from NMU-knockout mice. In vitro the presence of LDHA inhibitor can reduce the production of lactic acid stimulated by NMU, which can increase the anti-tumor activity of CD8+ T cells. Moreover, treatment of the pancreatic cancer cells with a phosphoinositide 3-kinase (PI3K) inhibitor diminished NMU-induced lactate production and the activities of PK and LDH, suggesting that NMU might regulate glycolysis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
- Department of Physiology, School of Basic Medical ScienceShenyang Medical CollegeShenyangChina
| | - Si Wang
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Jia Wang
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Mengnan Zhou
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Qi Shi
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Beixing Liu
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| |
Collapse
|
12
|
Mukai Y, Okubo TS, Lazarus M, Ono D, Tanaka KF, Yamanaka A. Prostaglandin E 2 Induces Long-Lasting Inhibition of Noradrenergic Neurons in the Locus Coeruleus and Moderates the Behavioral Response to Stressors. J Neurosci 2023; 43:7982-7999. [PMID: 37734949 PMCID: PMC10669809 DOI: 10.1523/jneurosci.0353-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.
Collapse
Affiliation(s)
- Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tatsuo S Okubo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Chinese Institute for Brain Research, Beijing 102206, China
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
13
|
Pałasz A, Worthington JJ, Filipczyk Ł, Saganiak K. Pharmacomodulation of brain neuromedin U signaling as a potential therapeutic strategy. J Neurosci Res 2023; 101:1728-1736. [PMID: 37496289 DOI: 10.1002/jnr.25234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/08/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Neuromedin U (NMU) belongs to a family of multifunctional neuropeptides that modulate the activity of several neural networks of the brain. Acting via metabotropic receptor NMUR2, NMU plays a role in the regulation of multiple systems, including energy homeostasis, stress responses, circadian rhythms, and endocrine signaling. The involvement of NMU signaling in the central regulation of important neurophysiological processes and its disturbances is a potential target for pharmacological modulation. Number of preclinical studies have proven that both modified NMU analogues such as PASR8-NMU or F4R8-NMU and designed NMUR2 agonists, for example, CPN-116, CPN-124 exhibit a distinct pharmacological activity especially when delivered transnasally. Their application can potentially be useful in the more convenient and safe treatment of obesity, eating disorders, Alzheimer's disease-related memory impairment, alcohol addiction, and sleep disturbances. Accumulating findings suggest that pharmacomodulation of the central NMU signaling may be a promising strategy in the treatment of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Saganiak
- Department of Anatomy, Collegium Medicum, Jagiellonian University, Kraków, Poland
| |
Collapse
|
14
|
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Bonifazi A, Cifani C, Micioni Di Bonaventura MV. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol Res 2023; 195:106875. [PMID: 37517560 DOI: 10.1016/j.phrs.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.
Collapse
Affiliation(s)
- Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy.
| | | |
Collapse
|
15
|
He E, Shi B, Liu Z, Chang K, Zhao H, Zhao W, Cui H. Identification of the molecular subtypes and construction of risk models in neuroblastoma. Sci Rep 2023; 13:11790. [PMID: 37479876 PMCID: PMC10362029 DOI: 10.1038/s41598-023-35401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 07/23/2023] Open
Abstract
The heterogeneity of neuroblastoma directly affects the prognosis of patients. Individualization of patient treatment to improve prognosis is a clinical challenge at this stage and the aim of this study is to characterize different patient populations. To achieve this, immune-related cell cycle genes, identified in the GSE45547 dataset using WGCNA, were used to classify cases from multiple datasets (GSE45547, GSE49710, GSE73517, GES120559, E-MTAB-8248, and TARGET) into subgroups by consensus clustering. ESTIMATES, CIBERSORT and ssGSEA were used to assess the immune status of the patients. And a 7-gene risk model was constructed based on differentially expressed genes between subtypes using randomForestSRC and LASSO. Enrichment analysis was used to demonstrate the biological characteristics between different groups. Key genes were screened using randomForest to construct neural network and validated. Finally, drug sensitivity was assessed in the GSCA and CellMiner databases. We classified the 1811 patients into two subtypes based on immune-related cell cycle genes. The two subtypes (Cluster1 and Cluster2) exhibited distinct clinical features, immune levels, chromosomal instability and prognosis. The same significant differences were demonstrated between the high-risk and low-risk groups. Through our analysis, we identified neuroblastoma subtypes with unique characteristics and established risk models which will improve our understanding of neuroblastoma heterogeneity.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Ziyu Liu
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Kaili Chang
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Hailan Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Wei Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China.
- Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
16
|
Imai N. Molecular and Cellular Neurobiology of Circadian and Circannual Rhythms in Migraine: A Narrative Review. Int J Mol Sci 2023; 24:10092. [PMID: 37373239 DOI: 10.3390/ijms241210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Migraine-a primary headache-has circadian and circannual rhythms in the onset of attacks. The circadian and circannual rhythms involve the hypothalamus, which is strongly associated with pain processing in migraines. Moreover, the role of melatonin in circadian rhythms has been implied in the pathophysiology of migraines. However, the prophylactic effect of melatonin in migraines is controversial. Calcitonin gene-related peptide (CGRP) has recently attracted attention in the pathophysiology and treatment of migraines. Pituitary adenylate cyclase-activating peptide (PACAP)-a neuropeptide identical to CGRP-is a potential therapeutic target after CGRP. PACAP is involved in the regulation of circadian entrainment to light. This review provides an overview of circadian and circannual rhythms in the hypothalamus and describes the relationship between migraines and the molecular and cellular neurobiology of circadian and circannual rhythms. Furthermore, the potential clinical applications of PACAP are presented.
Collapse
Affiliation(s)
- Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
17
|
Medrano M, Allaoui W, Van Bulck M, Thys S, Makrini-Maleville L, Seuntjens E, De Vos WH, Valjent E, Gaszner B, Van Eeckhaut A, Smolders I, De Bundel D. Neuroanatomical characterization of the Nmu-Cre knock-in mice reveals an interconnected network of unique neuropeptidergic cells. Open Biol 2023; 13:220353. [PMID: 37311538 PMCID: PMC10264104 DOI: 10.1098/rsob.220353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the Nmu promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions, in situ hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.
Collapse
Affiliation(s)
- Mireia Medrano
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Wissal Allaoui
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sofie Thys
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
| | | | - Eve Seuntjens
- Department of Biology, Laboratory of Developmental Neurobiology, KU Leuven, 3000 Leuven, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), 2610 Wilrijk, Belgium
| | - Emmanuel Valjent
- IGF, Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Bálazs Gaszner
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ann Van Eeckhaut
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
18
|
Tian R, Asadollahpour Nanaie H, Wang X, Dalai B, Zhao M, Wang F, Li H, Yang D, Zhang H, Li Y, Wang T, Luan T, Wu J. Genomic adaptation to extreme climate conditions in beef cattle as a consequence of cross-breeding program. BMC Genomics 2023; 24:186. [PMID: 37024818 PMCID: PMC10080750 DOI: 10.1186/s12864-023-09235-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Understanding the evolutionary forces related to climate changes that have been shaped genetic variation within species has long been a fundamental pursuit in biology. In this study, we generated whole-genome sequence (WGS) data from 65 cross-bred and 45 Mongolian cattle. Together with 62 whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of cattle populations. In addition, we performed comparative population genomics analyses to explore the genetic basis underlying variation in the adaptation to cold climate and immune response in cross-bred cattle located in the cold region of China. To elucidate genomic signatures that underlie adaptation to cold climate, we performed three statistical measurements, fixation index (FST), log2 nucleotide diversity (θπ ratio) and cross population composite likelihood ratio (XP-CLR), and further investigated the results to identify genomic regions under selection for cold adaptation and immune response-related traits. RESULTS By generating WGS data, we investigated the population genetic structure and phylogenetic relationship of studied cattle populations. The results revealed clustering of cattle groups in agreement with their geographic distribution. We detected noticeable genetic diversity between indigenous cattle ecotypes and commercial populations. Analysis of population structure demonstrated evidence of shared genetic ancestry between studied cross-bred population and both Red-Angus and Mongolian breeds. Among all studied cattle populations, the highest and lowest levels of linkage disequilibrium (LD) per Kb were detected in Holstein and Rashoki populations (ranged from ~ 0.54 to 0.73, respectively). Our search for potential genomic regions under selection in cross-bred cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes. We identified some adaptive introgression genes with greater than expected contributions from Mongolian ancestry into Molgolian x Red Angus composites such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis. In addition, we detected some candidate genes probably associated with immune response-related traits. CONCLUSION The study identified candidate genes involved in responses to cold adaptation and immune response in cross-bred cattle, including new genes or gene pathways putatively involved in these adaptations. The identification of these genes may clarify the molecular basis underlying adaptation to extreme environmental climate and as such they might be used in cattle breeding programs to select more efficient breeds for cold climate regions.
Collapse
Affiliation(s)
- Rugang Tian
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Hojjat Asadollahpour Nanaie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiao Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Baolige Dalai
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Meng Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Feng Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ding Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hao Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuan Li
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tingyue Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Tu Luan
- Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Jianghong Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China.
| |
Collapse
|
19
|
Zhang S, Wang X, Yang Q, Xia Q, Zhao Y, Zheng X, Zhang Y, Liu K. Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate plays an anti-hypoxic role through regulating neuroactive ligand-receptor interaction signaling pathway in larval zebrafish. Biomed Pharmacother 2023; 161:114570. [PMID: 36948132 DOI: 10.1016/j.biopha.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023] Open
Abstract
Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP) is the core active substance of salvia miltiorrhiza in disease treatment. The significance of our work lies in evaluating the ameliorating effects of IDHP on hypoxia-induced injury and investigating its mechanisms. We examined the morphology, dopamine neurons (DANs), cerebral vessels, and behavior of zebrafish larvae administrated by IDHP/VHC after hypoxia-induction. We next sought to explore its anti-hypoxic mechanisms via transcriptome analysis and qPCR experiments. The results indicated that hypoxia-induced injuries, including decreased length of DANs, number of cereal vessels, total swimming distance, and average swimming speed, were all alleviated by IDHP. Furthermore, transcriptome analysis provided a sign that IDHP most likely played the anti-hypoxic role through the neuroactive ligand-receptor interaction (NLRI) signaling pathway. Consistently, expression of related genes, such as f2rl1.1, p2ry10, npy1r, ptger2b, ptger2b, pth2rb, and nmur1a, was downregulated by hypoxia induction and recovered after IDHP administration. Therefore, we speculated that, via regulating NLRI, IDHP reduced inflammation, promoted angiogenesis, modulated blood pressure and flow, and inhibited cell apoptosis, and eventually played an anti-hypoxic role.
Collapse
Affiliation(s)
- Siyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
| | - Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; Department of Surgery, Li Ka Shing Faculty of Medicine, Pokfulam, The University of Hong Kong, Hong Kong.
| | - Qing Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
| | - Ye Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, PR China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, PR China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
| |
Collapse
|
20
|
Zeng Y, Ma W, Li L, Zhuang G, Luo G, Zhou H, Hao W, Liu Y, Guo F, Tian M, Ruan X, Gao M, Zheng X. Identification and validation of eight estrogen-related genes for predicting prognosis of papillary thyroid cancer. Aging (Albany NY) 2023; 15:1668-1684. [PMID: 36917092 PMCID: PMC10042678 DOI: 10.18632/aging.204582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
Papillary thyroid cancer (PTC) is one of the most common malignant tumors in female, and estrogen can affect its progression. However, the targets and mechanisms of estrogen action in PTC remain unclear. Therefore, this study focuses on the relationship between estrogen-related genes (ERGs) expression and prognosis in PTC, particularly neuropeptide U (NMU), and its important role in tumor progression. Based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, differentially expressed genes (DEGs) predominantly enriched in ERGs were identified between PTC and normal tissue. Then, we identified ERGs that contributed most to PTC prognosis, including Transducer of ERBB2 1 (TOB1), trefoil factor 1 (TFF1), phospholipase A and acyltransferase 3 (PLAAT3), NMU, kinesin family member 20A (KIF20A), DNA topoisomerase II alpha (TOP2A), tetraspanin 13 (TSPAN13), and carboxypeptidase E (CPE). In addition, we confirmed that NMU was highly expressed in PTC and explored the effect of NMU on PTC cells proliferation in vitro and in vivo. The results showed that the proliferative capacity of PTC cells was significantly reduced with NMU knockdown. Moreover, the phosphorylation levels of the Kirsten rat sarcoma virus (KRAS) signaling pathway were significantly lower with NMU knockdown. These results suggest that ERGs, especially NMU, may be novel prognostic indicators in PTC.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weike Ma
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lijuan Li
- Department of Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Gaojian Zhuang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511500, China
| | - Guoqing Luo
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511500, China
| | - Hong Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan 511500, China
| | - Weijing Hao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yu Liu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fengli Guo
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Mengran Tian
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin 300121, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin 300121, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300121, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
21
|
Yu Z, Hu E, Cai Y, Zhu W, Chen Q, Li T, Li Z, Wang Y, Tang T. mRNA and lncRNA co-expression network in mice of acute intracerebral hemorrhage. Front Mol Neurosci 2023; 16:1166875. [PMID: 37187956 PMCID: PMC10175784 DOI: 10.3389/fnmol.2023.1166875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe subtype of stroke lacking effective pharmacological targets. Long noncoding RNA (lncRNA) has been confirmed to participate in the pathophysiological progress of various neurological disorders. However, how lncRNA affects ICH outcomes in the acute phase is not completely clear. In this study, we aimed to reveal the relationship of lncRNA-miRNA-mRNA following ICH. Method We conducted the autologous blood injection ICH model and extracted total RNAs on day 7. Microarray scanning was used to obtain mRNA and lncRNA profiles, which were validated by RT-qPCR. GO/KEGG analysis of differentially expressed mRNAs was performed using the Metascape platform. We calculated the Pearson correlation coefficients (PCCs) of lncRNA-mRNA for co-expression network construction. A competitive endogenous (Ce-RNA) network was established based on DIANALncBase and miRDB database. Finally, the Ce-RNA network was visualized and analyzed by Cytoscape. Results In total, 570 differentially expressed mRNAs and 313 differentially expressed lncRNAs were identified (FC ≥ 2 and value of p <0.05). The function of differentially expressed mRNAs was mainly enriched in immune response, inflammation, apoptosis, ferroptosis, and other typical pathways. The lncRNA-mRNA co-expression network contained 57 nodes (21 lncRNAs and 36 mRNAs) and 38 lncRNA-mRNA pairs. The ce-RNA network was generated with 303 nodes (29 lncRNAs, 163 mRNAs, and 111 miRNAs) and 906 edges. Three hub clusters were selected to indicate the most significant lncRNA-miRNA-mRNA interactions. Conclusion Our study suggests that the top differentially expressed RNA molecules may be the biomarker of acute ICH. Furthermore, the hub lncRNA-mRNA pairs and lncRNA-miRNA-mRNA correlations may provide new clues for ICH treatment.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiqing Cai
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenxin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Chen
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhilin Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Tao Tang,
| |
Collapse
|
22
|
Regulation of feeding and therapeutic application of bioactive peptides. Pharmacol Ther 2022; 239:108187. [DOI: 10.1016/j.pharmthera.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
23
|
Yin Z, Zhou Y, Turnquist HR, Liu Q. Neuro-epithelial-ILC2 crosstalk in barrier tissues. Trends Immunol 2022; 43:901-916. [PMID: 36253275 DOI: 10.1016/j.it.2022.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) contribute to the maintenance of mammalian barrier tissue homeostasis. We review how ILC2s integrate epithelial signals and neurogenic components to preserve the tissue microenvironment and modulate inflammation. The epithelium that overlies barrier tissues, including the skin, lungs, and gut, generates epithelial cytokines that elicit ILC2 activation. Sympathetic, parasympathetic, sensory, and enteric fibers release neural signals to modulate ILC2 functions. We also highlight recent findings suggesting neuro-epithelial-ILC2 crosstalk and its implications in immunity, inflammation and resolution, tissue repair, and restoring homeostasis. We further discuss the pathogenic effects of disturbed ILC2-centered neuro-epithelial-immune cell interactions and putative areas for therapeutic targeting.
Collapse
Affiliation(s)
- Ziyi Yin
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Yawen Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China
| | - Hēth R Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Quan Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
24
|
Mehrotra S, Lam S, Glenn E, Hymel D, Sanford CA, Liu Q, Herich J, Wulff BS, Meek TH. Unanticipated Characteristics of a Selective, Potent Neuromedin-U Receptor 2 Agonist. ACS BIO & MED CHEM AU 2022; 2:370-375. [PMID: 37102164 PMCID: PMC10125376 DOI: 10.1021/acsbiomedchemau.2c00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Neuromedin-U (NMU) mediates several physiological functions via its two cognate receptors, NMUR1 and NMUR2. Disentangling the individual roles of each receptor has largely been undertaken through the use of transgenic mice bearing a deletion in one of the two receptors or by testing native molecules (NMU or its truncated version NMU-8) in a tissue-specific manner, in effect, taking advantage of the distinct receptor expression profiles. These strategies have proved quite useful despite the inherent limitations of overlapping receptor roles and potential compensatory influences of germline gene deletion. With these considerations in mind, the availability of potent, selective NMU compounds with appropriate pharmacokinetic profiles would advance the capabilities of investigators undertaking such efforts. Here, we evaluate a recently reported NMUR2-selective peptide (compound 17) for its in vitro potency (mouse and human), binding affinity, murine pharmacokinetic properties, and in vivo effects. Despite being designed as an NMUR2 agonist, our results show compound 17 unexpectedly binds but does not have functional activity on NMUR1, thereby acting as an R1 antagonist while simultaneously being a potent NMUR2 agonist. Furthermore, evaluation of compound 17 across all known and orphan G-protein-coupled receptors demonstrates multiple receptor partners beyond NMUR2/R1 binding. These properties need to be appreciated for accurate interpretation of results generated using this molecule and may limit the broader ability of this particular entity in disentangling the physiological role of NMU receptor biology.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Sebastian Lam
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Elizabeth Glenn
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - David Hymel
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Christina A. Sanford
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Qingyuan Liu
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - John Herich
- Novo
Nordisk Research Center, 530 Fairview Avenue North #5000, Seattle, Washington 98109, United States
| | - Birgitte S. Wulff
- Novo
Nordisk Global Obesity and Liver Disease Research, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Thomas H. Meek
- Transformational
Research Unit, Novo Nordisk Research Center
Oxford, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
25
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M, Worthington JJ. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol Rep 2022; 74:637-653. [PMID: 35653031 DOI: 10.1007/s43440-022-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression. RESULTS Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum. CONCLUSIONS The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Clinic of Psychiatric Rehabilitation, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
26
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Błaszczyk I, Bogus K, Łasut-Szyszka B, Krzystanek M, Worthington JJ. Effect of Escitalopram on the Number of DCX-Positive Cells and NMUR2 Receptor Expression in the Rat Hippocampus under the Condition of NPSR Receptor Blockade. Pharmaceuticals (Basel) 2022; 15:631. [PMID: 35631458 PMCID: PMC9143903 DOI: 10.3390/ph15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular interactions between the activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of adult neurogenesis and the expression of noncanonical stress-related neuropeptides such as neuromedin U (NMU). The present work therefore focused on immunoexpression of neuromedin U receptor 2 (NMUR2) and doublecortin (DCX) in the rat hippocampus after acute treatment with escitalopram and in combination with selective neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental individuals treated with escitalopram (at single dose 10 mg/kg daily), escitalopram + SHA-68, a selective NPSR antagonist (at single dose 40 mg/kg), SHA-68 alone, and corresponding vehicle control. All animals were sacrificed under halothane anaesthesia. The whole hippocampi were quickly excised, fixed, and finally sliced for general qualitative immunohistochemical assessment of the NPSR and NMUR2 expression. The number of immature neurons was enumerated using immunofluorescent detection of doublecortin (DCX) expression within the subgranular zone (SGZ). RESULTS Acute escitalopram administration affects the number of DCX and NMUR2-expressing cells in the adult rat hippocampus. A decreased number of DCX-expressing neuroblasts after treatment with escitalopram was augmented by SHA-68 coadministration. CONCLUSIONS Early pharmacological effects of escitalopram may be at least partly connected with local NPSR-related alterations of neuroblast maturation in the rat hippocampus. Escitalopram may affect neuropeptide and DCX-expression starting even from the first dose. Adult neurogenesis may be regulated via paracrine neuropeptide S and NMU-related signaling.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland;
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Iwona Błaszczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland; (A.S.-Ś.); (I.B.); (K.B.)
| | - Barbara Łasut-Szyszka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Marek Krzystanek
- Clinic of Psychiatric Rehabilitation, Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Ziolowa 45/47, 40-635 Katowice, Poland;
| | - John J. Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK;
| |
Collapse
|
27
|
Yao WL, Liu LP, Wen YQ, Wang BS, Dong JQ, He WH, Fan XP, Wang WH, Zhang WD. Moniezia benedeni infection enhances neuromedin U (NMU) expression in sheep (Ovis aries) small intestine. BMC Vet Res 2022; 18:143. [PMID: 35439995 PMCID: PMC9016964 DOI: 10.1186/s12917-022-03243-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuromedin U (NMU) plays an important role in activating the group 2 innate lymphoid cells (ILC2s) and initiating the host's anti-parasitic immune responses. It is aimed to explore the distribution characteristics of NMU in the sheep small intestine and the influence of Moniezia benedeni infection on them. In the present study, the pET-28a-NMU recombinant plasmids were constructed, and Escherichia coli. BL21 (DE3) were induced to express the recombinant protein. And then, the rabbit anti-sheep NMU polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of NMU in the intestine of normal and Moniezia benedeni-infected sheep were detected by ELISA. RESULTS The results showed that the molecular weight of the obtained NMU recombinant protein was consistent with the expected molecular (13 kDa) and it was expressed in the form of inclusion body. The titer and specificity of obtained rabbit anti-sheep NMU polyclonal antibody were good. The results of immunofluorescence analysis showed that the nerve fibers which specifically expressed NMU mainly extended from the ganglion in the submucosal to lamina propria (LP) in the sheep small intestine, and the expression level was relatively high; especially on the nerve fibers of LP around the intestinal glands. The expression levels were gradually increased from the duodenum to the ileum, and the levels in the jejunum and ileum were significantly higher than that in the duodenum (P < 0.05). In addition, scattered NMU positive cells were distributed in the epithelium of the jejunal crypts. Moniezia benedeni infection increased the expression of NMU in each intestinal segment, especially in the jejunum and ileum there were significant increase (P < 0.05). CONCLUSIONS It was suggested that Moniezia benedeni infection could be detected by the high expression of NMU in sheep enteric nervous, and which laid the foundation for further studies on whether NMU exerts anti-parasitic immunity by activating ILC2s. In addition, NMU was expressed in some intestinal gland epitheliums, which also provided a basis for studying its roles in regulation of the immune homeostasis. The present study laid the foundation for further revealing the molecular mechanism of sheep's neural-immune interaction network perceiving the colacobiosis of parasites.
Collapse
Affiliation(s)
- Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Yan-Qiao Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Bao-Shan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Jia-Qi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Wan-Hong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Xi-Ping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
28
|
Qi X, Liu P, Wang Y, Xue J, An Y, Zhao C. Insights Into the Research Status of Neuromedin U: A Bibliometric and Visual Analysis From 1987 to 2021. Front Med (Lausanne) 2022; 9:773000. [PMID: 35273971 PMCID: PMC8901607 DOI: 10.3389/fmed.2022.773000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromedin U (NMU) is a regulatory peptide that is widely distributed throughout the body and performs a variety of physiological functions through its corresponding receptors. In recent years, NMU has become the focus of attention in various fields of research as its diverse and essential functions have gradually been elucidated. However, there have been no bibliometrics studies on the development trend and knowledge structure of NMU research. Therefore, in this study, we used VOSviewer software to statistically analyze scientific data from articles related to NMU to track the developmental footprint of this research field, including relevant countries, institutions, authors, and keywords. We retrieved a total of 338 papers related to NMU, written by 1,661 authors from 438 organizations of 41 countries that were published in 332 journals. The first study on NMU was reported by a group in Japan in 1985. Subsequently, nine articles on NMU were published from 1987 to 2006. A small leap in this field could be detected in 2009, with 30 articles published worldwide. Among the various countries in which this research has been performed, Japan and the United States have made the most outstanding contributions. Miyazato M, Kangawa K, and Mori K from the Department of Biochemistry, National Retrain and Cardiovascular Center Research Institute in Japan were the most productive authors who have the highest number of citations. Keyword analysis showed six clusters: central-nervous-system, homeostasis, energy metabolism, cancer, immune inflammation, and food intake. The three most highly cited articles were associated with inflammation. Overall, this study demonstrates the research trends and future directions of NMU, providing an objective description of the contributions in this field along with reference value for future research.
Collapse
Affiliation(s)
- Xueping Qi
- Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | | | - Yanjie Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | - Jinmei Xue
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | - Yunfang An
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| | - Changqing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Taiyuan, China
| |
Collapse
|