1
|
Karimi M, Shirsalimi N, Sedighi E. Apelin-13 as a novel diagnostic laboratory biomarker in thromboembolic disorders: a review of literature with prospective insights. Int J Emerg Med 2024; 17:190. [PMID: 39695958 DOI: 10.1186/s12245-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Thromboembolic disorders, including deep vein thrombosis (DVT) and pulmonary embolism (PE), are major global health concerns, causing significant morbidity and mortality. Early diagnosis is crucial for effective treatment and improved patient outcomes. Recent research has identified Apelin-13, a bioactive peptide in the apelin family, as a promising diagnostic biomarker for Thromboembolic disorders. Apelin-13 supports vascular health by regulating protease balance through plasminogen activator inhibitors and modulating endothelial cell function. Additionally, it plays a vital role in coagulation, with elevated levels associated with an increased risk of clot formation, suggesting its utility in predicting thrombosis risk, particularly in preoperative evaluations. Findings indicate that the Apelin-13 pathway shows significant promise as a biomarker for Thromboembolic disorders, underscoring its potential therapeutic applications and the need for further investigation. This review synthesizes current literature on thromboembolic disorders and associated laboratory biomarkers, with a particular focus on Apelin-13. It examines Apelin-13's role in disease mechanisms, its physiological functions, and its potential as a diagnostic biomarker in thromboembolic conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine.
| | - Niyousha Shirsalimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Eshagh Sedighi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| |
Collapse
|
2
|
Girault-Sotias PE, Deloux R, De Mota N, Riche S, Daubeuf F, Iturrioz X, Parlakian A, Berdeaux A, Agbulut O, Bonnet D, Boitard S, Llorens-Cortes C. The metabolically resistant apelin-17 analog LIT01-196 reduces cardiac dysfunction and remodeling in heart failure after myocardial infarction. Can J Cardiol 2024:S0828-282X(24)01258-3. [PMID: 39674544 DOI: 10.1016/j.cjca.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND To protect patients after myocardial infarction (MI) and preserve cardiac function, the development of new therapeutics remains an important issue. Apelin, a neuro-vasoactive peptide, increases aqueous diuresis and cardiac contractility while reducing vascular resistance. However, its in vivo half-life is very short. We therefore developed a metabolically resistant apelin-17 analog, LIT01-196 and investigated its effects on cardiac function and remodeling in a murine MI model. METHODS The selectivity of LIT01-196 towards ApelinR was checked in vitro. Its in vivo half-life was assessed in male Swiss mice by radioimmunoassay. After permanent coronary artery ligation to induce MI, mice received subcutaneous administration of LIT01-196 (MI+LIT01-196, 9 mg/kg/day) or saline (MI+Vehicle) for 4 weeks. LV function was assessed using echocardiography and Millar catheter, vascular density by immunofluorescence and cardiac fibrosis by Sirius red staining. Real-time quantitative PCR measured mRNA expression of HF and fibrosis biomarkers and SERCA2. RESULTS The in vivo half-life of LIT01-196, a specific and selective ApelinR agonist, was two and a half hours. MI+LIT01-196 mice showed significantly improved LV function, reduced HF biomarkers and enhanced cardiac contractility and SERCA2 expression compared with MI+Vehicle. LIT01-196 treatment almost doubled cardiac vascular density and maintained LV wall thickness post-MI. It also significantly reduced cardiac fibrosis and fibrosis biomarkers, without decreasing arterial blood pressure. CONCLUSIONS Chronic LIT01-196 treatment post-MI improves LV function without decreasing blood pressure, increases cardiac vascular density and reduces cardiac remodeling. This suggests that Apelin-R activation by LIT01-196, may constitute an original pharmacological approach for HF treatment after MI.
Collapse
Affiliation(s)
- Pierre-Emmanuel Girault-Sotias
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France
| | - Robin Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France
| | - Stephanie Riche
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 67401 Illkirch, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 67401 Illkirch, France
| | - Xavier Iturrioz
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - A Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Alain Berdeaux
- INSERM U955-IMRB Equipe 03 Université Paris Est Créteil, 94010 Créteil, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, 67401 Illkirch, France
| | - Solene Boitard
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France; Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Rosner MH, Rondon-Berrios H, Sterns RH. Syndrome of Inappropriate Antidiuresis. J Am Soc Nephrol 2024:00001751-990000000-00496. [PMID: 39621420 DOI: 10.1681/asn.0000000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Syndrome of inappropriate antidiuresis (SIAD)-the most frequent cause of hypotonic hyponatremia-is mediated by nonosmotic release of arginine vasopressin, which promotes water retention by activating renal vasopressin type 2 (V2) receptors. There are numerous causes of SIAD, including malignancy, pulmonary and central nervous system diseases, and medications. Rare activating mutations of the V2 receptor can also cause SIAD. Determination of the etiology of SIAD is important because removal of the stimulus for inappropriate arginine vasopressin secretion offers the most effective therapy. Treatment of SIAD is guided by symptoms and their severity, as well as the level of plasma sodium. In the absence of severe symptoms, which require urgent intervention, many clinicians focus on fluid restriction as a first-line treatment. Second-line therapeutic options include loop diuretics and salt tablets, urea, and V2 receptor antagonists.
Collapse
Affiliation(s)
- Mitchell H Rosner
- Department of Medicine, University of Virginia Health, Charlottesville, Virginia
| | - Helbert Rondon-Berrios
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard H Sterns
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
4
|
Bizzozero CA, Monnerat S, Chapman FA, Dhaun N, Refardt J, Christ-Crain M. Apelin levels in patients with polyuria-polydipsia syndrome upon copeptin stimulation tests. Eur J Endocrinol 2024; 191:491-498. [PMID: 39425917 DOI: 10.1093/ejendo/lvae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVE Differentiating between arginine vasopressin deficiency (AVP-D) and primary polydipsia (PP) requires a copeptin stimulation test. We aimed to characterize changes in apelin, an endogenous hormone antagonizing AVP, upon copeptin stimulation tests. DESIGN Post hoc secondary analysis of a multi-centric cross-over diagnostic study (NCT03572166). SETTING Outpatients included at the University Hospital Basel. PARTICIPANTS Patients with AVP-D and PP. INTERVENTIONS Copeptin stimulation tests with hypertonic saline and arginine infusion. OUTCOMES AND MEASURES The primary outcome was the absolute difference in apelin between baseline and peak of copeptin stimulation tests. Secondary objectives included the diagnostic ability of apelin. RESULTS Thirty-eight patients were analysed, 23 (60%) had PP and 15 (40%) had AVP-D. No difference was seen between baseline median (IQR) apelin levels in PP and AVP-D (1079 [912, 1225] and 910 [756, 1039] pmol/L, respectively). Upon hypertonic saline, apelin decreased by -241 (-326, -124) pmol/L in PP and -47.2 (-198, 5.86) pmol/L in AVP-D (P = .022). The area under the curve (AUC) to differentiate PP from AVP-D was 97.1% (95% CI, 90.5-100) for copeptin and 49.3% (95% CI, 30.4-68.1) for apelin (P < .001). Upon arginine, apelin decreased by -39.2 (-96.4, 39.8) pmol/L in PP and increased by 25.8 (2.8, 113.0) pmol/L in AVP-D (P = .1). The AUC was 97.1% (95% CI: 79.6-98.0) for copeptin and 60.5% (95% CI: 39.8-80.0) for apelin (P = .007). CONCLUSIONS AND RELEVANCE Our findings suggest that apelin decreases to a greater extent in PP compared with AVP-D upon copeptin stimulation tests. However, copeptin remains the best marker to differentiate AVP-D from PP.
Collapse
Affiliation(s)
- Chiara Angela Bizzozero
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Sophie Monnerat
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Fiona A Chapman
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Loukas N, Vrachnis D, Antonakopoulos N, Stavros S, Machairiotis N, Fotiou A, Christodoulaki C, Lolos M, Maroudias G, Potiris A, Drakakis P, Vrachnis N. Decoding Apelin: Its Role in Metabolic Programming, Fetal Growth, and Gestational Complications. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1270. [PMID: 39457235 PMCID: PMC11506081 DOI: 10.3390/children11101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Placental insufficiency and gestational diabetes, which are both serious pregnancy complications, are linked to altered fetal growth, whether restricted or excessive, and result in metabolic dysfunction, hypoxic/oxidative injury, and adverse perinatal outcomes. Although much research has been carried out in this field, the underlying pathogenetic mechanisms have not as yet been fully elucidated. Particularly because of the role it plays in cardiovascular performance, glucose metabolism, inflammation, and oxidative stress, the adipokine apelin was recently shown to be a potential regulator of fetal growth and metabolic programming. This review investigated the numerous biological actions of apelin in utero and aimed to shed more light on its role in fetal growth and metabolic programming. The expression of the apelinergic system in a number of tissues indicates its involvement in many physiological mechanisms, including angiogenesis, cell proliferation, energy metabolism, inflammation, and oxidative stress. Moreover, it appears that apelin has a major function in disorders such as diabetes mellitus, fetal growth abnormalities, fetal hypoxia, and preeclampsia. We herein describe in detail the regulatory effects exerted by the adipokine apelin on fetal growth and metabolic programming while stressing the necessity for additional research into the therapeutic potential of apelin and its mechanisms of action in pregnancy-related disorders.
Collapse
Affiliation(s)
- Nikolaos Loukas
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 185 36 Piraeus, Greece
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Dionysios Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | | | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Alexandros Fotiou
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Chryssi Christodoulaki
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Markos Lolos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Georgios Maroudias
- Department of Obstetrics and Gynecology, Santorini General Hospital, 847 00 Thira, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| |
Collapse
|
6
|
Chapman FA, Melville V, Godden E, Morrison B, Bruce L, Maguire JJ, Davenport AP, Newby DE, Dhaun N. Cardiovascular and renal effects of apelin in chronic kidney disease: a randomised, double-blind, placebo-controlled, crossover study. Nat Commun 2024; 15:8387. [PMID: 39402039 PMCID: PMC11473822 DOI: 10.1038/s41467-024-52447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 10/17/2024] Open
Abstract
Chronic kidney disease (CKD) affects ~10% of the population and cardiovascular disease is its commonest complication. Despite treatment, patient outcomes remain poor and newer therapies are urgently needed. Here, we investigated the systemic and renal effects of apelin in CKD. In a randomized, double-blind, placebo-controlled, crossover study, 24 subjects (12 patients with CKD and 12 matched healthy subjects) received pyroglutamated apelin-13 ([Pyr1]apelin-13, 1 nmol/min and 30 nmol/min) or matched placebo on two separate visits. Systemic and renal hemodynamics were monitored throughout. The co-primary endpoints were change in systemic vascular resistance index and renal blood flow. Secondary endpoints were change in blood pressure, cardiac output, pulse wave velocity, glomerular filtration rate, natriuresis, free water clearance and urinary protein excretion. In both health and CKD, 30 nmol/min [Pyr1]apelin-13 reduced mean arterial pressure by ~4%, systemic vascular resistance by ~12%, and increased cardiac index by ~10%, compared to placebo (p < 0.05 for all). Both doses of [Pyr1]apelin-13 increased renal blood flow by ~15%, natriuresis by ~20% and free water clearance by ~10%, compared to placebo (p < 0.05 for all). In patients with chronic kidney disease only, glomerular filtration rate fell by ~10%, effective filtration fraction by ~5% and proteinuria by ~25% (p < 0.01 for all). Apelin has short-term cardiovascular and renal benefits in CKD. If maintained longer-term, these should improve patient outcomes. Clinical trials of long-acting oral apelin agonists are justified in CKD and other conditions with impaired salt and water balance. Registration number at www.clinicalTrials.gov : NCT03956576. Funded by Kidney Research UK.
Collapse
Affiliation(s)
- Fiona A Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Vanessa Melville
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Emily Godden
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Beth Morrison
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neeraj Dhaun
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Tzoulis P. Empagliflozin: a wonder drug for the treatment of SIAD? Front Endocrinol (Lausanne) 2024; 15:1453159. [PMID: 39435353 PMCID: PMC11491318 DOI: 10.3389/fendo.2024.1453159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Ploutarchos Tzoulis
- Department of Metabolism & Experimental Therapeutics, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
8
|
Li J, Song X, Liao X, Shi Y, Chen H, Xiao Q, Liu F, Zhan J, Cai Y. Adaptive enzyme-responsive self-assembling multivalent apelin ligands for targeted myocardial infarction therapy. J Control Release 2024; 372:571-586. [PMID: 38897292 DOI: 10.1016/j.jconrel.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microvascular dysfunction following myocardial infarction exacerbates coronary flow obstruction and impairs the preservation of ventricular function. The apelinergic system, known for its pleiotropic effects on improving vascular function and repairing ischemic myocardium, has emerged as a promising therapeutic target for myocardial infarction. Despite its potential, the natural apelin peptide has an extremely short circulating half-life. Current apelin analogs have limited receptor binding efficacy and poor targeting, which restricts their clinical applications. In this study, we utilized an enzyme-responsive peptide self-assembly technique to develop an enzyme-responsive small molecule peptide that adapts to the expression levels of matrix metalloproteinases in myocardial infarction lesions. This peptide is engineered to respond to the high concentration of matrix metalloproteinases in the lesion area, allowing for precise and abundant presentation of the apelin motif. The changes in hydrophobicity allow the apelin motif to self-assemble into a supramolecular multivalent peptide ligand-SAMP. This self-assembly behavior not only prolongs the residence time of apelin in the myocardial infarction lesion but also enhances the receptor-ligand interaction through increased receptor binding affinity due to multivalency. Studies have demonstrated that SAMP significantly promotes angiogenesis after ischemia, reduces cardiomyocyte apoptosis, and improves cardiac function. This novel therapeutic strategy offers a new approach to restoring coronary microvascular function and improving damaged myocardium after myocardial infarction.
Collapse
Affiliation(s)
- Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Shi
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huiming Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuqun Xiao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Monnerat S, Drivakos N, Chapman FA, Dhaun N, Refardt J, Christ-Crain M. Apelin and Copeptin Levels in Patients With Chronic SIAD Treated With Empagliflozin. J Endocr Soc 2024; 8:bvae106. [PMID: 38872994 PMCID: PMC11170659 DOI: 10.1210/jendso/bvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 06/15/2024] Open
Abstract
Background Empagliflozin increases sodium levels in patients with a chronic syndrome of inappropriate antidiuresis (SIAD), and dapagliflozin increases apelin levels in patients with diabetes mellitus. Exogenous apelin increases sodium levels in rats with SIAD. We aimed to investigate whether an increase in plasma apelin concentration may contribute to the efficacy of empagliflozin in SIAD. Methods Post hoc secondary analysis of a double-blind, crossover, placebo-controlled trial performed from December 2017 to August 2021 at the University Hospital Basel, Switzerland, investigating the effect of 4-week treatment with empagliflozin 25 mg/day as compared to placebo in 14 outpatients with chronic SIAD (NCT03202667). The objective was to investigate the effect of empagliflozin on plasma apelin and copeptin concentrations and their ratio. Results Fourteen patients, 50% female, with a median [interquartile range] age of 72 years [65-77] were analyzed. Median apelin concentration was 956 pmol/L [853, 1038] at baseline. Median [interquartile range] apelin relative changes were +11% [0.7, 21] and +8% [-5, 25] (P = .672) at the end of the placebo and empagliflozin phases, respectively. Median copeptin concentration was 2.6 [2.2, 4.5] pmol/L at baseline and had a relative change of +5 [-2. 11]% and +25% [10, 28] (P = .047) over the placebo and empagliflozin phases, respectively. Conclusion Empagliflozin did not lead to significant changes in apelin or the apelin/copeptin ratio in patients with chronic SIAD but led to an increase in copeptin. This suggests that the efficacy of empagliflozin in SIAD is independent of apelin and is not blunted by the adaptative increase in copeptin.
Collapse
Affiliation(s)
- Sophie Monnerat
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Nikolaos Drivakos
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Department of Nephrology, Hospital Center of Biel, 2501 Biel, Switzerland
| | - Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Julie Refardt
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
10
|
Cui J, Wang M, Zhang W, Sun J, Zhang Y, Zhao L, Hong Z, Li D, Huang YX, Zhang N, Chen Y. Enhancing insulin sensitivity in type 2 diabetes mellitus using apelin-loaded small extracellular vesicles from Wharton's jelly-derived mesenchymal stem cells: a novel therapeutic approach. Diabetol Metab Syndr 2024; 16:84. [PMID: 38622732 PMCID: PMC11020616 DOI: 10.1186/s13098-024-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), characterized by β-cell dysfunction and insulin resistance (IR), presents considerable treatment challenges. Apelin is an adipocyte-derived factor that shows promise in improving IR; however, it is limited by poor targeting and a short half-life. In the present study, engineered small extracellular vesicles (sEVs) derived from Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) loaded with apelin were used to address the limitations of the therapeutic application of apelin. METHODS WJ-MSCs were transduced to obtain engineered sEVs loaded with overexpressed apelin (apelin-MSC-sEVs) and the control sEVs (MSC-sEVs). T2DM mice were injected with apelin-MSC-sEVs and MSC-sEVs, and blood glucose monitoring, glucose and insulin tolerance tests, confocal microscopy, and immunocytochemical analysis were performed. IR models of 3T3-L1 adipocytes were employed to detect GLUT4 expression in each group using western blotting; the affected pathways were determined by measuring the changes in Akt and AMPK signaling and phosphorylation. RESULTS Upon successful engineering, WJ-MSCs demonstrated significant overexpression of apelin. The genetic modification did not adversely impact the characteristics of sEVs, ranging from surface protein markers, morphology, to particle size, but generated apelin-overexpressed sEVs. Apelin-MSC-sEVs treatment resulted in notable enhancement of Akt and AMPK pathway activities within 3T3-L1 adipocytes and adipose tissues of T2DM mice. Furthermore, the apelin-loaded sEVs significantly reduced plasma glucose levels, increased pancreatic β-cell proliferation, improved insulin and glucose tolerance, and modulated pro-inflammatory cytokine profiles, compared to mice treated with the control sEVs. CONCLUSION Our study developed novel genetically engineered apelin-loaded sEVs derived from WJ-MSCs, and demonstrated their potent role in augmenting insulin sensitivity and regulating inflammatory responses, highlighting their therapeutic promise in T2DM management. The findings open new avenues for the development of clinically viable treatments for T2DM in humans using the apelin-loaded sEVs.
Collapse
Affiliation(s)
- Jing Cui
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Mingkun Wang
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Wenhong Zhang
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Li Zhao
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Zhibo Hong
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Dongtao Li
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Yi Xiong Huang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China
| | - Ningkun Zhang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China.
| | - Yu Chen
- The Fifth School of Clinical Medicine, Navy Clinical College, Anhui Medical University, Hefei, Anhui, China.
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China·, China.
| |
Collapse
|
11
|
Ho JKM, Tam HL, Leung LYL. Effectiveness of Vasopressin Against Cardiac Arrest: A Systematic Review of Systematic Reviews. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07571-3. [PMID: 38470507 DOI: 10.1007/s10557-024-07571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE This systematic review (SR) of SRs evaluates the effectiveness of vasopressin alone or in combination with other drugs in improving the outcomes of cardiac arrest (CA). METHODS Using a three-step approach, we searched five databases to identify all relevant SRs. Two reviewers independently selected suitable studies, assessed study quality, and extracted relevant data. If an outcome was reported by multiple SRs, a re-meta-analysis was conducted as needed; otherwise, a narrative analysis was performed. RESULTS Twelve SRs covering 16 original studies were included in this review. The meta-analysis results revealed a significant increase in survival to hospital admission for patients with in-hospital CA (IHCA) or out-of-hospital CA (OHCA) receiving vasopressin alone compared with that for those receiving epinephrine alone. Furthermore, the return of spontaneous circulation (ROSC) was significantly increased in patients with OHCA receiving vasopressin with epinephrine compared with that in those receiving epinephrine alone. Compared with patients with IHCA receiving epinephrine with placebo, those receiving vasopressin, steroids, and epinephrine (VSE) exhibited significant increases in ROSC, survival to hospital discharge, favorable neurological outcomes, mean arterial pressure, renal failure-free days, coagulation failure-free days, and insulin requirement. CONCLUSION VSE is the most effective drug combination for improving the short- and long-term outcomes of IHCA. It is recommended to use VSE in patients with IHCA. Future studies should investigate the effectiveness of VSE against OHCA and CA of various etiologies, the types and standard dosages of steroids for cardiac resuscitation, and the effectiveness of vasopressin-steroid in improving CA outcomes.
Collapse
Affiliation(s)
- Jonathan Ka-Ming Ho
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong.
| | - Hon-Lon Tam
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Leona Yuen-Ling Leung
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong
| |
Collapse
|
12
|
Kirbaş ZÖ, Bayraktar B, Aktaş EO. Salivary apelin hormone response and dysfunctional attitudes in adolescents in Türkiye: a relational screening model. BMC Psychol 2024; 12:64. [PMID: 38336859 PMCID: PMC10854078 DOI: 10.1186/s40359-024-01551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Adolescence is the period in which physical and emotional changes occur through hormones, the individual acquires gender characteristics and prepares for the adult role psychologically and physically. Dysfunctional attitudes are beliefs and attitudes that can lead to depression by causing negative thoughts about oneself, others, and the future.Dysfunctional attitudes negatively affect children's mental health. Hormones have a significant impact on human behavior and cognitive functions. However, little is known about the role and influence of hormones on dysfunctional attitudes. Apelin is a hormone responsible for controlling emotions by regulating emotional behavior. The level of dysfunctional attitudes is one of the important issues in nursing practice in terms of protecting and improving children's mental health. However, little is known about the role and impact of hormones on dysfunctional attitudes.This study aimed to examine adolescents' dysfunctional attitudes and salivary apelin hormone levels in terms of sociodemographic variables. METHODS The study was conducted in a relational screening model with 151 adolescents aged 9-14 years who were reported to be clinically healthy in Türkiye. Apelin hormone levels were analyzed by ELISA technique in the saliva samples of the participants. In the evaluation of dysfunctional attitudes, the relationship between the score obtained from the dysfunctional attitude scale and salivary hormone levels was evaluated. RESULTS In the study, a negative, strong and statistically significant correlation was found between the average salivary apelin hormone level and dysfunctional attitudes of adolescents (p =.000). Mean salivary hormone levels of apelin in adolescent girls and boys were 0.696 (SD 0.052) ng/ml, respectively; while 0.671 (SD 0.047) ng/ml was determined (p =.002), dysfunctional attitudes scale scores were 52.95 (SD 14.43); it was determined as 59.04 (SD 14.22) (p =.006). On the other hand, the highest average salivary apelin hormone level (p =.038). and the lowest level of dysfunctional attitudes were determined in adolescent girls aged 13-14 years (p =.028). CONCLUSIONS In our study, we found that while the salivary apelin hormone levels of adolescents decreased, their dysfunctional attitudes increased. We found that adolescents' dysfunctional attitudes decreased with age. In contrast, apelin hormone levels increased with age.
Collapse
Affiliation(s)
- Zila Özlem Kirbaş
- Faculty of Health Sciences, Department of Nursing, Bayburt University, Bayburt, Türkiye.
| | - Bülent Bayraktar
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Bayburt University, Bayburt, Türkiye
| | - Elif Odabaşi Aktaş
- Faculty of Health Sciences, Department of Midwifery Bayburt, Bayburt University, Bayburt, Türkiye
| |
Collapse
|
13
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Ye Q, Xu G, Yuan H, Mi J, Xie Y, Li H, Li Z, Huang G, Chen X, Li W, Yang R. Urinary PART1 and PLA2R1 Could Potentially Serve as Diagnostic Markers for Diabetic Kidney Disease Patients. Diabetes Metab Syndr Obes 2023; 16:4215-4231. [PMID: 38162802 PMCID: PMC10757812 DOI: 10.2147/dmso.s445341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a chronic renal disease which could eventually develop into renal failure. Though albuminuria and estimated glomerular filtration rate (eGFR) are helpful for the diagnosis of DKD, the lack of specific biomarkers reduces the efficiency of therapeutic interventions. Methods Based on bulk-seq of 56 urine samples collected at different time points (including 11 acquired from DKD patients and 11 from healthy controls), in corporation of scRNA-seq data of urine samples and snRNA-seq data of renal punctures from DKD patients (retrieved from NCBI GEO Omnibus), urine-kidney specific genes were identified by Multiple Biological Information methods. Results Forty urine-kidney specific genes/differentially expressed genes (DEGs) were identified to be highly related to kidney injury and proteinuria for the DKD patients. Most of these genes participate in regulating glucagon and apoptosis, among which, urinary PART1 (mainly derived from distal tubular cells) and PLA2R1 (podocyte cell surface marker) could be used together for the early diagnosis of DKD. Moreover, urinary PART1 was significantly associated with multiple clinical indicators, and remained stable over time in urine. Conclusion Urinary PART1 and PLA2R1 could be shed lights on the discovery and development of non-invasive diagnostic method for DKD, especially in early stages.
Collapse
Affiliation(s)
- Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Hao Yuan
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Junhao Mi
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yuli Xie
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Haoyu Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Zhejun Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Guanwen Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Xuesong Chen
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, People’s Republic of China
| | - Rirong Yang
- Centre for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
15
|
Liu Y, Jiang M, Li Y, Chen P, Chen X. Advances in the study of ELABELA in renal physiological functions and related diseases. Front Pharmacol 2023; 14:1276488. [PMID: 38026926 PMCID: PMC10644379 DOI: 10.3389/fphar.2023.1276488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly expressed in human embryonic, cardiac, and renal tissues and involves various biological functions, such as embryonic development, blood circulation regulation, and maintaining body fluid homeostasis. ELA is also closely related to the occurrence and development of acute kidney injury, hypertensive kidney damage, diabetic nephropathy, renal tumors, and other diseases. Understanding the physiological role of ELA and its mechanism of action in kidney-related diseases would provide new targets and directions for the clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- YuRong Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - MingChun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Yue Li
- Department of Anatomy, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Peng Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - XiaoYu Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| |
Collapse
|
16
|
Shen J, Feng J, Wu Z, Ou Y, Zhang Q, Nong Q, Wu Q, Li C, Tan X, Ye M, Gao Z, Zhang Y, Liang W, Xia L, Qin Y, Huang Y, Zhao N, Hu S. Apelin Prevents and Alleviates Crystalline Silica-induced Pulmonary Fibrosis via Inhibiting Transforming Growth Factor Beta 1-triggered Fibroblast Activation. Int J Biol Sci 2023; 19:4004-4019. [PMID: 37705751 PMCID: PMC10496498 DOI: 10.7150/ijbs.81436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/26/2023] [Indexed: 09/15/2023] Open
Abstract
Silicosis is a common and ultimately fatal occupational disease, yet the limited therapeutic option remains the major clinical challenge. Apelin, an endogenous ligand of the G-protein-coupled receptor (APJ), is abundantly expressed in diverse organs. The apelin-APJ axis helps to control pathological and physiological processes in lung. The role of apelin in the pathological process and its possible therapeutic effects on silicosis have not been elucidated. In this study, we found that lung expression and circulating levels of apelin were markedly decreased in silicosis patients and silica-induced fibrotic mice and associated with the severity. Furthermore, in vivo data demonstrated that pre-treatment from day 3 and post-treatment from day 15 with apelin could both alleviate silica-induced pulmonary fibrosis in mice. Besides, apelin inhibited pulmonary fibroblast activation via transforming growth factor beta 1 (TGF-β1) signaling. Our study suggested that apelin could prevent and reverse silica-induced pulmonary fibrosis by inhibiting the fibroblast activation through TGF-β1 signaling pathway, thus providing a new potential therapeutic strategy for silicosis and other pulmonary fibrosis.
Collapse
Affiliation(s)
- Jianling Shen
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiayin Feng
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhijia Wu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Yushi Ou
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qing Zhang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Qiying Nong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Qifeng Wu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Cong Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Xiaohui Tan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongxiang Gao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Ying Zhang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Weihui Liang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Lihua Xia
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| | - Yongshun Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Na Zhao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shijie Hu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, China
| |
Collapse
|
17
|
Gergics M, Pham-Dobor G, Kurdi C, Montskó G, Mihályi K, Bánfai G, Kanizsai P, Kőszegi T, Mezősi E, Bajnok L. Apelin-13 as a Potential Biomarker in Critical Illness. J Clin Med 2023; 12:4801. [PMID: 37510916 PMCID: PMC10381233 DOI: 10.3390/jcm12144801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The adrenocortical system and copeptin as prognostic markers were intensively investigated in critical illness. The potential predictive power of apelin-13 as a biomarker is largely unknown. We aimed to investigate the prognostic role of apelin-13 in relation to free cortisol, aldosterone, CRH, and copeptin in critically ill patients. METHODS In this prospective observational study, 124 critically ill patients (64 men, 60 women, median age: 70 (59-78) years) were consecutively enrolled at the time of admission. All routinely available clinical and laboratory parameters were evaluated and correlated to hormonal changes. RESULTS Serum apelin-13 was 1161 (617-2967) pg/mL in non-survivors vs. 2477 (800-3531) pg/mL in survivors (p = 0.054). The concentrations of apelin-13 and CRH had strong positive correlations (r = 0.685, p < 0.001) and were significantly higher in surviving non-septic patients (Apelin-13 (pg/mL): 2286 (790-3330) vs. 818 (574-2732) p < 0.05; CRH (pg/mL) 201 (84-317) vs. 89 (74-233) p < 0.05). Apelin-13 and free cortisol were independent determinants of survival in the multivariate Cox regression analysis, while copeptin, CRH, or aldosterone were not. CONCLUSIONS Beyond free cortisol, serum apelin-13 may also help refine prognostic predictions in the early phase of critical illness, especially in non-septic patients.
Collapse
Affiliation(s)
- Marin Gergics
- 1st Department of Internal Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Gréta Pham-Dobor
- 1st Department of Internal Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Csilla Kurdi
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Montskó
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Krisztina Mihályi
- Department of Emergency Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Bánfai
- Department of Emergency Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Péter Kanizsai
- Department of Emergency Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kőszegi
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Emese Mezősi
- 1st Department of Internal Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - László Bajnok
- 1st Department of Internal Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
18
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
19
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
20
|
Luo H, Gu X, Tong G, Han L. Research progress of apelin in acute ischemic brain injury. Am J Transl Res 2022; 14:7260-7267. [PMID: 36398257 PMCID: PMC9641465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Acute ischemic brain injury is a cerebrovascular disease with high clinical incidence. An increasing number of preclinical evidence has verified the complex interaction between autophagy disorder and mitochondrial damage. Endoplasmic reticulum stress, oxidative stress and excessive neuroinflammation are the main mechanisms of the neural injury induced by acute cerebral ischemia-reperfusion injury. Apelin and its receptors are widely distributed in various tissues and organs in the human body. Increasing evidence has suggested that apelin has a neuroprotective effect against excitatory toxicity injury, oxidative stress injury and induction of neuronal apoptosis, and it can play a neuroprotective role after acute cerebral ischemia-reperfusion injury. This review summarizes the progress of the neuroprotective effects and mechanisms of apelin, aiming to provide evidence for its therapeutic potential.
Collapse
Affiliation(s)
- Huaiqing Luo
- Department of Physiology, Science Research Center, School of Basic Medical Science, Changsha Medical UniversityChangsha 410219, Hunan, China
- Hunan Provincial Key Laboratory of New Pharmaceutical Preparation, Changsha Medical UniversityChangsha 410219, Hunan, China
| | - Xiaoyong Gu
- Department of Physiology, Science Research Center, School of Basic Medical Science, Changsha Medical UniversityChangsha 410219, Hunan, China
| | - Guoxiang Tong
- The First Affiliated Hospital, Changsha Medical UniversityChangsha 410219, Hunan, China
| | - Li Han
- Department of Physiology, Science Research Center, School of Basic Medical Science, Changsha Medical UniversityChangsha 410219, Hunan, China
- Hunan Provincial Key Laboratory of New Pharmaceutical Preparation, Changsha Medical UniversityChangsha 410219, Hunan, China
| |
Collapse
|
21
|
Gergics M, Pham-Dobor G, Horváth-Szalai Z, Kőszegi T, Mezősi E, Bajnok L. Secondary hormonal alterations in short-term severe hypothyroidism; in the focus: Apelin and copeptin. Front Endocrinol (Lausanne) 2022; 13:981891. [PMID: 36187132 PMCID: PMC9519179 DOI: 10.3389/fendo.2022.981891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the complex interactions of thyroid hormone, apelin, and copeptin in the fluid-ion homeostasis of patients with severe transitory hypothyroidism. METHODS In this prospective observational study, 39 patients (ECOG: 0; 11 men, 28 women, mean age: 50.3 ± 14.9 years) were investigated during short-term severe hypothyroidism due to surgical removal of the thyroid gland and after adequate thyroid replacement therapy. In addition to the routinely available lab tests, copeptin and apelin levels were determined using ELISA. RESULTS In the hypothyroid state, apelin concentration was lower, while copeptin levels did not differ compared to the euthyroid condition. Apelin showed a positive correlation with copeptin (p = 0.003), sodium (p = 0.002), NT-proBNP (p < 0.001), and fT4 (p < 0.001) and a negative correlation with thyroid-stimulating hormone (TSH) (p < 0.001). In multivariate linear regression models, copeptin and TSH proved to be significant independent predictors of apelin levels, of which TSH had an explanatory power of 48.7%. Aside from apelin, copeptin only correlated with sodium (p = 0.046). Sodium levels were negatively associated with TSH (p = 0.004) and positively with ACTH (p = 0.002) and cortisol (p = 0.047), in addition to copeptin. None of the parameters were independent predictors of serum sodium levels in a multivariate regression model. CONCLUSIONS In short-term severe hypothyroidism, serum apelin level is markedly decreased, which may predispose susceptible patients to hyponatremia, while the level of copeptin is unchanged. TSH and copeptin are independent predictors of apelin concentration, of which TSH is stronger.
Collapse
Affiliation(s)
- Marin Gergics
- 1st Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gréta Pham-Dobor
- 1st Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zoltán Horváth-Szalai
- Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamás Kőszegi
- Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Emese Mezősi
- 1st Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - László Bajnok
- 1st Department of Medicine, University of Pécs, Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- *Correspondence: László Bajnok,
| |
Collapse
|